Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 390, Issue 8, pp 857–862 | Cite as

Chronic loss of inhibitor-1 diminishes cardiac RyR2 phosphorylation despite exaggerated CaMKII activity

  • Stefan Neef
  • Jordi Heijman
  • Kristian Otte
  • Matthias Dewenter
  • Ali R. Saadatmand
  • Stefanie Meyer-Roxlau
  • Christopher L. Antos
  • Johannes Backs
  • Dobromir Dobrev
  • Michael Wagner
  • Lars S. Maier
  • Ali El-ArmoucheEmail author
Brief Communication


Inhibitor-1 (I-1) modulates protein phosphatase 1 (PP1) activity and thereby counteracts the phosphorylation by kinases. I-1 is downregulated and deactivated in failing hearts, but whether its role is beneficial or detrimental remains controversial, and opposing therapeutic strategies have been proposed. Overactivity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) with hyperphosphorylation of ryanodine receptors (RyR2) at the CaMKII-site is recognized to be central for heart failure and arrhythmias. Using an I-1-deficient mouse line as well as transfected cell lines, we investigated the effects of acute and chronic modulation of I-1 on CaMKII activity and RyR2 phosphorylation. We demonstrate that I-1 acutely modulates CaMKII by regulating PP1 activity. However, while ablation of I-1 should thus limit CaMKII-activation, we unexpectedly found exaggerated CaMKII-activation under β-adrenergic stress upon chronic loss of I-1 in knockout mice. We unraveled that this is due to chronic upregulation of the exchange protein activated by cAMP (EPAC) leading to augmented CaMKII activation, and using computational modeling validated that an increase in EPAC expression can indeed explain our experimental findings. Interestingly, at the level of RyR2, the increase in PP1 activity more than outweighed the increase in CaMKII activity, resulting in reduced RyR phosphorylation at Ser-2814. Exaggerated CaMKII activation due to counterregulatory mechanisms upon loss of I-1 is an important caveat with respect to suggested therapeutic I-1-inhibition, as CaMKII overactivity has been heavily implicated in several cardiac pathologies.


Inhibitor-1 Ca2+/calmodulin-dependent protein kinase II Protein phosphatase 1 Ryanodine receptor 



Ca2+/calmodulin-dependent protein kinase II


Exchange factor directly activated by cAMP


Protein phosphatase type-1 inhibitor 1


Constitutive active I-1




neonatal rat cardiomyocytes


Protein kinase A




Protein phosphatase type-1


Protein phosphatase type-2a


Ryanodine receptor type 2


Sarco/endoplasmic reticulum Ca2+-ATPase isotype 2a


Sarcoplasmic reticulum


Wild type



This work was supported by Regensburg Medical Faculty intramural funding (ReForM B-grant, to S.N.), German Centre for Cardiovascular Research (DZHK) (DZHK B 15-014 Extern, to S.N.), the German Research Foundation (DFG) (grants TP A02 SFB 1002, EL 270/5-1 and EL 270/7-1 to A.E.A.; grants MA 1982/4-2 and TP A03 SFB 1002, to L.S.M.; grant WA 2586/4-1, to M.W.), by the Fondation Leducq (Alliance for Calmodulin Kinase II Signaling in Heart Failure and Arrhythmias, to L.S.M., and European-North American Atrial Fibrillation Research Alliance (grant 07CVD03), to D.D.), by the German Federal Ministry of Education and Research (DZHK (German Center for Cardiovascular Research), to D.D., L.S.M. and A.E.A.), and by the Netherlands Organization for Health Research and Development (grant ZonMW Veni 91616057, to J.H.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

210_2017_1376_MOESM1_ESM.docx (425 kb)
ESM 1 (DOCX 425 kb)


  1. Allen PB, Hvalby O, Jensen V, Errington ML, Ramsay M, Chaudhry FA, Bliss TV, Storm-Mathisen J, Morris RG, Andersen P, Greengard P (2000) Protein phosphatase-1 regulation in the induction of long-term potentiation: heterogeneous molecular mechanisms. J Neurosci 20:3537–3543PubMedGoogle Scholar
  2. Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473. doi: 10.1016/j.yjmcc.2011.01.012 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116:1853–1864. doi: 10.1172/JCI27438 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Carr AN, Schmidt AG, Suzuki Y, del Monte F, Sato Y, Lanner C, Breeden K, Jing SL, Allen PB, Greengard P, Yatani A, Hoit BD, Grupp IL, Hajjar RJ, DePaoli-Roach AA, Kranias EG (2002) Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol 22:4124–4135. doi: 10.1128/MCB.22.12.4124-4135.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. El-Armouche A, Rau T, Zolk O, Ditz D, Pamminger T, Zimmermann WH, Jäckel E, Harding SE, Boknik P, Neumann J, Eschenhagen T (2003) Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes. FASEB J 17:437–439. doi: 10.1096/fj.02-0057fje PubMedGoogle Scholar
  6. El-Armouche A, Pamminger T, Ditz D, Zolk O, Eschenhagen T (2004) Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. Cardiovasc Res 61:87–93. doi: 10.1016/j.cardiores.2003.11.005 CrossRefPubMedGoogle Scholar
  7. El-Armouche A, Bednorz A, Pamminger T, Ditz D, Didié M, Dobrev D, Eschenhagen T (2006) Role of calcineurin and protein phosphatase-2A in the regulation of phosphatase inhibitor-1 in cardiac myocytes. Biochem Biophys Res Commun 346:700–706. doi: 10.1016/j.bbrc.2006.05.182 CrossRefPubMedGoogle Scholar
  8. El-Armouche A, Wittköpper K, Degenhardt F, Weinberger F, Didié M, Melnychenko I, Grimm M, Peeck M, Zimmermann WH, Unsöld B, Hasenfuss G, Dobrev D, Eschenhagen T (2008) Phosphatase inhibitor-1-deficient mice are protected from catecholamine-induced arrhythmias and myocardial hypertrophy. Cardiovasc Res 80:396–406. doi: 10.1093/cvr/cvn208 CrossRefPubMedGoogle Scholar
  9. Florea S, Anjak A, Cai WF, Qian J, Vafiadaki E, Figueria S, Haghighi K, Rubinstein J, Lorenz J, Kranias EG (2012) Constitutive phosphorylation of inhibitor-1 at Ser67 and Thr75 depresses calcium cycling in cardiomyocytes and leads to remodeling upon aging. Basic Res Cardiol 107:279. doi: 10.1007/s00395-012-0279-z CrossRefPubMedPubMedCentralGoogle Scholar
  10. Heijman J, Volders PG, Westra RL, Rudy Y (2011) Local control of β-adrenergic stimulation: effects on ventricular myocyte electrophysiology and ca(2+)-transient. J Mol Cell Cardiol 50:863–871. doi: 10.1016/j.yjmcc.2011.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Mustroph J, Neef S, Maier LS (2016) CaMKII as a target for arrhythmia suppression. Pharmacol Ther. doi: 10.1016/j.pharmthera.2016.10.006 PubMedGoogle Scholar
  12. Nicolaou P, Rodriguez P, Ren X, Zhou X, Qian J, Sadayappan S, Mitton B, Pathak A, Robbins J, Hajjar RJ, Jones K, Kranias EG (2009a) Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury. Circ Res 104:1012–1020. doi: 10.1161/CIRCRESAHA.108.189811 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Nicolaou P, Hajjar RJ, Kranias EG (2009b) Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J Mol Cell Cardiol 47:365–371. doi: 10.1016/j.yjmcc.2009.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Pathak A, del Monte F, Zhao W, Schultz JE, Lorenz JN, Bodi I, Weiser D, Hahn H, Carr AN, Syed F, Mavila N, Jha L, Qian J, Marreez Y, Chen G, McGraw DW, Heist EK, Guerrero JL, DePaoli-Roach AA, Hajjar RJ, Kranias EG (2005) Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res 96:756–766. doi: 10.1161/01.RES.0000161256.85833.fa CrossRefPubMedGoogle Scholar
  15. Pritchard TJ, Kawase Y, Haghighi K, Anjak A, Cai W, Jiang M, Nicolaou P, Pylar G, Karakikes I, Rapti K, Rubinstein J, Hajjar RJ, Kranias EG (2013) Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts. PLoS One 8:e80717. doi: 10.1371/journal.pone.0080717 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ruiz-Hurtado G, Morel E, Domínguez-Rodríguez A, Llach A, Lezoualc’h F, Benitah JP, Gomez AM (2013) Epac in cardiac calcium signaling. J Mol Cell Cardiol 58:162–171. doi: 10.1016/j.yjmcc.2012.11.021 CrossRefPubMedGoogle Scholar
  17. Wittköpper K, Fabritz L, Neef S, Ort KR, Grefe C, Unsöld B, Kirchhof P, Maier LS, Hasenfuss G, Dobrev D, Eschenhagen T, El-Armouche A (2010) Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging. J Clin Invest 120:617–626. doi: 10.1172/JCI40545 PubMedPubMedCentralGoogle Scholar
  18. Wittköpper K, Dobrev D, Eschenhagen T, El-Armouche A (2011) Phosphatase-1 inhibitor-1 in physiological and pathological β-adrenoceptor signalling. Cardiovasc Res 91:392–401. doi: 10.1093/cvr/cvr058 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Stefan Neef
    • 1
  • Jordi Heijman
    • 2
  • Kristian Otte
    • 3
  • Matthias Dewenter
    • 3
    • 4
  • Ali R. Saadatmand
    • 3
    • 4
  • Stefanie Meyer-Roxlau
    • 3
  • Christopher L. Antos
    • 3
  • Johannes Backs
    • 4
  • Dobromir Dobrev
    • 5
  • Michael Wagner
    • 3
  • Lars S. Maier
    • 1
  • Ali El-Armouche
    • 3
    Email author
  1. 1.Department of Internal Medicine IIUniversity Hospital RegensburgRegensburgGermany
  2. 2.Department of Cardiology, CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of MedicineTechnische Universität DresdenDresdenGermany
  4. 4.Department of CardiologyUniversity of HeidelbergHeidelbergGermany
  5. 5.Institute of Pharmacology, West German Heart and Vascular CenterUniversity Duisburg-EssenEssenGermany

Personalised recommendations