Skip to main content
Log in

Applicability of in vitro-in vivo translation of cathepsin K inhibition from animal species to human with the use of free-drug hypothesis

  • Brief Communication
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The correlation of in vitro inhibition of cathepsin K (CatK) activity and in vivo suppression of collagen I biomarkers was examined with three selective CatK inhibitors to explore the potential translatability from animal species to human. These inhibitors exhibited good in vitro potencies toward recombinant CatK enzymes across species, with IC50 values ranging from 0.20 to 6.1 nM. In vivo studies were conducted in animal species following multiple-day dosing of the CatK inhibitors to achieve steady-state plasma drug concentration-time profiles. Measurement of urinary bone resorption biomarkers (cross-linked N-terminal telopeptide and helical peptide of type I collagen) revealed drug concentration-dependent suppression of biomarkers, with EC50 values estimated to be 12 to 160 nM. Marked improvement in the correlation between in vitro and in vivo CatK activities was observed with the application of unbound (free) fraction in plasma, consistent with the conditions stipulated by the free-drug hypothesis. These results indicate that the in vitro-in vivo translation of CatK inhibition observed in animal species can translate to humans when the unbound fraction of the inhibitor is considered. Interestingly, residual levels of urinary bone resorption marker were detected as the suppression reached saturation (at an average of 82% inhibition), an apparent phenomenon observed regardless of the species, biomarker, or compound examined. Since cathepsin enzymes other than CatK were reported to catalyze cleavage of collagen I, it is hypothesized that CatK-mediated degradation of collagen I in bone represents ~82% of overall collagen I turnover in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Atley LM, Mort JS, Lalumiere M, Eyre DR (2000) Proteolysis of human bone collagen by cathepsin K: characterization of the cleavage sites generating the cross-linked N-telopeptide neoepitope. Bone 26:241–247

    Article  CAS  PubMed  Google Scholar 

  • Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, Hustad CM, DaSilva C, Santora AC, Ince BA (2010) Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res 25:937–947

    PubMed  Google Scholar 

  • Bossard B, Tomazek TA, Thompson S (1996) Proteolytic activity of human osteoclast cathepsin K. J Biol Chem 271:12517–12524

    Article  CAS  PubMed  Google Scholar 

  • Brown JP, Albert C, Nassar BA, Adachi JD, Cole D, Davison KS, Dooley KC, Won-Wacuhope A, Douville P, Hanley DA, Jamal SA, Josse R, Kaiser S, Krahn J, Krause R, Kremer R, Lepage R, Letendre E, Morin S, Ooi DS, Papaioaonnou A, Ste-Marie L-G (2009) Bone turnover markers in the management of postmenopausal osteoporosis. Clin Biochem 42:929–942

    Article  CAS  PubMed  Google Scholar 

  • Cheng HC (2001) The power issue: determination of K B or K i from IC50. A closer look at the Cheng-Prusoff equation, the Schild plot and related power equations. J Pharmacol Toxicol Methods 46:61–71

    Article  CAS  PubMed  Google Scholar 

  • Cheung AM, Majumdar S, Brixen K, Chapurlat R, Fuerst T, Engelke K, Dardzinski B, Cabal A, Verbruggen N, Ather S, Rosenberg E, de Papp AE (2014) Effects of odanacatib on the radius and tibia of postmenopausal women: improvements in bone geometry, microarchitecture, and estimated bone strength. J Bone Miner Res 29:1786–1794

    Article  CAS  PubMed  Google Scholar 

  • Desmarais S, Massé F, Percival MD (2009) Pharmacological inhibitors to identify roles of cathepsin K in cell-based studies: a comparison of available tools. Biol Chem 390:941–948

    Article  CAS  PubMed  Google Scholar 

  • Duong LT, Crawford R, Scott K, Winkelman CT, Wu G, Szczerba P, Gentile MA (2016a) Odanacatib, effects of long-term treatment or its discontinuation on bone mass, turnover and strength in the ovariectomized rabbit model of osteopenia. Bone 93:86–96

    Article  CAS  PubMed  Google Scholar 

  • Duong LT, Leung AT, Langdahl B (2016b) Cathepsin K inhibition: a new mechanism for the treatment of osteoporosis. Calcif Tissue Int 98:381–397

    Article  CAS  Google Scholar 

  • Eastell R, Nagase S, Small M, Boonen S, Spector T, Ohyama M, Kuwayama T, Deacon S (2014) Effect of ONO-5334 on bone mineral density and biochemical markers of bone turnover in postmenopausal osteoporosis: 2-year results from the OCEAN study. J Bone Miner Res 29:458–466

    Article  CAS  PubMed  Google Scholar 

  • Falgueyret J-P, Black WC, Cromlish W, Desmarais S, Lamontagne S, Mellon C, Riendeau D, Rodan S, Tawa P, Wesolowski G, Bass KE, Venkatraman S, Percival MD (2004) An activity-based probe for the determination of cysteine cathepsin protease activities in whole cells. Anal Biochem 355:218–227

    Article  Google Scholar 

  • Falgueyret J-P, Desmarais S, Oballa R, Black WC, Cromlish W, Khougaz K, Lamontagne S, Massé F, Riendeau D, Toulmond S, Percival MD (2005) Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J Med Chem 48:7535–7543

    Article  CAS  PubMed  Google Scholar 

  • Gabrielsson J, Grean AR (2009) Quantitative pharmacology or pharmacokinetic pharmacodynamic integration should be a vital component in integrative pharmacology. J Pharmacol Exp Ther 331:767–774

    Article  CAS  PubMed  Google Scholar 

  • Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, Foged NT, Delmas PD, Delaissé J-M (1998) The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 273:32346–32352

    Article  Google Scholar 

  • Garnero P, Delmas PD (2003) An immunoassay for type I collagen α1 helicoidal peptide 620-633, a new marker of bone resorption in osteoporosis. Bone 32:20–26

    Article  CAS  PubMed  Google Scholar 

  • Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong LT, Falgueyret J-P, Kimmel DB, Lamontagne S, Léger S, LeRiche T, Li CS, Massé F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Thérien M, Truong V-L, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18:923–928

    Article  CAS  PubMed  Google Scholar 

  • Henriksen K, Christiansen C, Karsdal MA (2015) Role of biochemical markers in the management of osteoporosis. Climacteric 18(sup2):10–18

    Article  PubMed  Google Scholar 

  • Isabel E, Bateman KP, Chauret N, Cromlish W, Desmarais S, Duong LT, Falgueyret J-P, Gauthier JY, Lamontagne S, Lau CK, Léger S, LeRiche T, Lévesque J-F, Li CS, Massé F, McKay DJ, Mellon C, Nicoll-Griffith DA, Oballa RM, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Thérien M, Truong VL, Wesolowski G, Young RN, Zamboni R, Black WC (2010) The discovery of MK-0674, an orally bioavailable cathepsin K inhibitor. Bioorg Med Chem Lett 20:887–892

    Article  CAS  PubMed  Google Scholar 

  • Kassahun K, Black WC, Nicoll-Griffith D, McIntosh I, Chauret N, Day S, Rossenberg E, Koeplinger K (2011) Pharmacokinetics and metabolism in rats, dogs, and monkeys of the cathepsin K inhibitor odanacatib: demethylation of a methylsulfonyl moiety as a major metabolic pathway. Drug Metab Dispos 39:1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Kassahun K, McIntosh I, Koeplinger K, Sun L, Talaty JE, Miller DL, Dixon R, Zajic S, Stoch SA (2014) Disposition and metabolism of the cathepsin K inhibitor odanacatib in humans. Drug Metab Dispos 42:818–827

    Article  PubMed  Google Scholar 

  • Kim MK, Kim HD, Park JH, Lim JI, Yang JS, Kwak WY, Sung SY, Kim HJ, Kim SH, Lee CH, Shim JY, Bae MH, Shin YA, Huh Y, Han TD, Chong W, Choi H, Ahn BN, Yang SO, Son MH (2006) An orally active cathepsin K inhibitor, furan-2-carboxylic acid, 1-{1-[4-fluoro-2-(2-oxo-pyrrolidin-1-yl)-phenyl]-3-oxo-piperidin-4-ylcarbamoly}-cyclohexyl-amide (OST-4077), inhibits osteoclast activity in vitro and bone loss in ovariectomized rats. J Pharmacol Exp Ther 318:555–562

    Article  CAS  PubMed  Google Scholar 

  • Kochansky CJ, McMaster DR, Lu P, Koeplinger KA, Kerr HH, Shou M, Korzekwa KR (2008) Impact of pH on plasma protein binding in equilibrium dialysis. Mol Pharm 5:438–448

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dare L, Vasko-Moser JA, James IE, Blake SM, Rickard DJ, Hwang S-M, Tomaszek T, Yamashita DS, Marquis RW, Oh H, Jeong JU, Veber DF, Gowen M, Lark MW, Stroup G (2007) A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in acute model of elevated bone turnover in vivo in monkeys. Bone 40:122–131

    Article  CAS  PubMed  Google Scholar 

  • Mariappan TT, Madlekar S, Marathe P (2013) Insight into tissue unbound concentration: utility in drug discovery and development. Curr Drug Metab 14:324–340

    Article  CAS  PubMed  Google Scholar 

  • Masarachia PJ, Pennypacker BL, Pickarski M, Scott KR, Wesolowski GA, Smith SY, Samadfam R, Goetzmann JE, Scott BB, Kimmel DB, Duong LT (2012) Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res 27:509–523

    Article  CAS  PubMed  Google Scholar 

  • Meibohm B, Derendorf H (1997) Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modeling. Int J Clin Pharm Ther 35:401–413

    CAS  Google Scholar 

  • Mukherjee K, Chattopadhyay N (2016) Pharmacological inhibition of cathepsin K: a promising novel approach for postmenopausal osteoporosis therapy. Biochem Pharmacol 117:10–19

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Ou Y, Euler DH, Wessner K, Adamski S, Luo B, Wesolowski GA, Vogel R, Glantschnig H, Lubbers LS, Carroll SS, Lai M-T (2015) Determination of in vivo enzyme occupancy utilizing inhibitor dissociation kinetics. J Am Chem Soc 137:11230–11233

    Article  CAS  PubMed  Google Scholar 

  • Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33:7–21

    Article  CAS  PubMed  Google Scholar 

  • Nagase S, Hashimoto Y, Small M, Ohyama M, Kuwayama T, Deacon S (2012) Serum and urine bone resorption markers and pharmacokinetics of the cathepsin K inhibitor ONO-5334 after ascending single doses in post menopausal women. Br J Clin Pharmacol 74:959–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochi Y, Yamada H, Mori H, Nakanishi Y, Nishikawa S, Kayasuga R, Kawada N, Kunishige A, Hashimoto Y, Tanaka M, Sugitani M, Kawabata K (2014) Effects of eight-month treatment with ONO-5334, a cathepsin K inhibitor, on bone metabolism, strength and microstructure in ovariectomized cynomolgus monkeys. Bone 65:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pennypacker BL, Oballa RM, Levesque S, Kimmel DB, Duong LT, Cathepsin K (2013) Inhibitors increase distal femoral bone mineral density in rapidly growing rabbits. BMC Musculoskelet Disord 14:344

    Article  PubMed  PubMed Central  Google Scholar 

  • Post TM, Cremers SCLM, Kerbusch T, Danhof M (2010) Bone physiology, disease and treatment: towards disease system analysis in osteoporosis. Clin Pharmacokinet 49:89–118

    Article  CAS  PubMed  Google Scholar 

  • Robichaud J, Black WC, Thérien M, Paquet J, Oballa RM, Bayly CI, McKay DJ, Wang Q, Isabel E, Léger S, Mellon C, Kimmel DB, Wesolowski G, Percival MD, Massé F, Desmarais S, Falgueyret J-P, Crane SN (2008) Identification of a nonbasic, nitrile-containing cathepsin K inhibitor (MK-1256) that is efficacious in a monkey model of osteoporosis. J Med Chem 51:6410–6420

    Article  CAS  PubMed  Google Scholar 

  • Robichaud J, Oballa R, Prasit P, Falgueyret J-P, Percival D, Wesolowski G, Rodan S, Kimmel D, Johnson C, Bryant C, Venkatraman S, Setti E, Mendonca R, Palmer J (2003) A novel class of nonpeptidic biaryl inhibitors of human cathepsin K. J Med Chem 46:3709–3727

    Article  CAS  PubMed  Google Scholar 

  • Rodan SB, Duong LT (2008) Cathepsin K—a new target for osteoporosis. IBMS BoneKEy 5:16–24

    Article  Google Scholar 

  • Russell RGG (2007) Bisphosphonates: mode of action and pharmacology. Pediatrics 119:S150–S162

    Article  PubMed  Google Scholar 

  • Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. New Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  • Stoch SA, Wagner JA (2008) Cathepsin K inhibitors: a novel target for osteoporosis therapy. Clin Pharmacol Ther 83:172–176

    Article  CAS  PubMed  Google Scholar 

  • Stoch SA, Zajic S, Stone JA, Miller DL, van Bortel L, Lasseter KC, Pramanik B, Cilissen C, Liu Q, Liu L, Scott BB, Panebianco D, Ding Y, Gottesdiener K, Wagner JA (2013) Odanacatib, a selective cathepsin K inhibitor to treat osteoporosis: safety, tolerability, pharmacokinetics and pharmacodynamics—results from single oral dose studies in healthy volunteers. Br J Clin Pharmacol 75:1240–1254

    Article  CAS  PubMed  Google Scholar 

  • Stoch SA, Zajic S, Stone J, Miller DL, Van Dyck K, Gutierrez MJ, De Decker M, Liu L, Liu Q, Scott BB, Panebianco D, Jin B, Duong LT, Gottesdiener K, Wagner JA (2009) Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase I studies. Clin Pharmacol Ther 86:175–182

    Article  CAS  PubMed  Google Scholar 

  • Stroup GB, Lark MW, Veber DF, Bhattacharyya A, Blake S, Dare LC, Erhard KF, Hoffman SJ, James IE, Marquis RW, Ru Y, Vasko-Moser JA, Smith BR, Tomaszek T, Gowen M (2001) Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J Bone Miner Res 16:1739–1746

    Article  CAS  PubMed  Google Scholar 

  • Turk V, Stoka V, Vasilijeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88

    Article  CAS  PubMed  Google Scholar 

  • Williams DS, McCracken PJ, Purcell M, Pickarski M, Mathers PD, Savitz AT, Szumiloski J, Jayakar RY, Somayajula S, Krause S, Brown K, Winkelmann CT, Scott BB, Cook L, Motzel SL, Hargreaves R, Evelhoch JL, Cabal A, Dardzinski BJ, Hangartner TN, Duong LT (2013) Effect of odanacatib on bone turnover markers, bone density and geometry of the spine and hip of ovariectomized monkeys: a head-to-head comparison with alendronate. Bone 56:489–496

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Peter Szczerba and Rachel Korn for conducting measurements of urinary biomarkers, Li Sun and Joan Ellis for providing quantification of CatK inhibitors in plasma, Dr. Michael Gentile for providing additional data from the ovariectomized-rabbit study with odanacatib, and Dr. Stefan Zajic and Dr. Julie Stone for additional human PK/PD analyses and valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bennett Ma.

Ethics declarations

Conflict of interest

All authors are current or former employees of MSD who were employed at the time the experiment was conducted. The authors alone are responsible for the writing and content of this article.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Luo, B., Euler, D.H. et al. Applicability of in vitro-in vivo translation of cathepsin K inhibition from animal species to human with the use of free-drug hypothesis. Naunyn-Schmiedeberg's Arch Pharmacol 390, 435–441 (2017). https://doi.org/10.1007/s00210-017-1356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1356-5

Keywords

Navigation