Potential biomarkers associated with oxidative stress for risk assessment of colorectal cancer

  • Paramita Mandal


Cells are continuously threatened by the damage caused by reactive oxygen/nitrogen species (ROS/RNS), which are produced during physiological oxygen metabolism. In our review, we will summarize the latest reports on the role of oxidative stress and oxidative stress-induced signaling pathways in the etiology of colorectal cancer. The differences in ROS generation may influence the levels of oxidized proteins, lipids, and DNA damage, thus contributing to the higher susceptibility of colon. Reactive species (RS) of various types are formed and are powerful oxidizing agents, capable of damaging DNA and other biomolecules. Increased formation of RS can promote the development of malignancy, and the “normal” rates of RS generation may account for the increased risk of cancer development in the aged. In this review, we focus on the role of oxidative stress in the etiology of colorec-tal cancer and discuss free radicals and free radical-stimulated pathways in colorectal carcinogenesis.


Colorectal cancer Oxidative stress Free radicals Reactive oxygen metabolites DNA damage 



The author acknowledges to the Head, Department of Zoology, The University of Burdwan, and The Vice Chancellor, The University of Burdwan, for writing a review.

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.


  1. Aleksandrova K, Nimptsch K, Pischon T (2013) Obesity and colorectal cancer. Front Biosci 5:61–77CrossRefGoogle Scholar
  2. Angeli JPF, Garcia CCM, Sena F et al (2011) Lipid hydroperoxide induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radic Biol Med 51(2):503–515PubMedCrossRefGoogle Scholar
  3. Aw TY (2005) Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility. Toxicol Appl Pharmacol 204:320–328PubMedCrossRefGoogle Scholar
  4. Bardou M, Barkun A, Martel M (2010) Effect of statin therapy on colorectal cancer. Gut 59(11):1572–1585PubMedCrossRefGoogle Scholar
  5. Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncology Volume 2012:1–21CrossRefGoogle Scholar
  6. Barrera G, Pizzimenti S, Dianzani MU (2008) View at Publisher · View at Google Scholar · View at Scopus Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Mol Asp Med 29(1–2):1–8CrossRefGoogle Scholar
  7. Bauer V, Bauer F (1999) Reactive oxygen species mediators of tissue protection and injury. Gen Physiol Biophys 18:7–14PubMedGoogle Scholar
  8. Beno I, Staruchova M, Volkovova K, Batovsky M (1995) Increased antioxidant enzyme activities in the colorectal adenoma and carcinoma. Neoplasma 42:265–269PubMedGoogle Scholar
  9. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316PubMedCrossRefGoogle Scholar
  10. Bird CL et al (1996) Plasma ferritin, iron intake, and the risk of colorectal polyps. Am J Epidemiol 144(1):34–41PubMedCrossRefGoogle Scholar
  11. Boer BC, de Graaff F, Brusse-Keizer M, Bouman DE, Slump CH, Sle-Valentijn M, Klaase JM (2016) Skeletal muscle mass and quality as risk factors for postoperative outcome after open colon resection for cancer. Int J Color Dis 31(6):1117–1124CrossRefGoogle Scholar
  12. Borges-Canha M, Portela-Cidade JP, Dinis-Ribeiro M, Leite Moreira AF, Pimentel-Nunes P 2015. Role of colonic microbiota in colorectal carcinogenesis: a systematic review. Rev Esp Enferm Dig.107.Google Scholar
  13. Cadet J, Douki T, Gasparutto D, Ravanat JL (2003a) Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531(1–2):5–23PubMedCrossRefGoogle Scholar
  14. Calatayud S, Barrachina D, Esplugues JV (2001) Nitric oxide: relation to integrity, injury, and healing of the gastric mucosa. Microsc Res Tech 53(5):325–335PubMedCrossRefGoogle Scholar
  15. Center MM, Jemal A, Ward E (2009) International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomark Prev 18(6):1688–1694CrossRefGoogle Scholar
  16. Cespedes Feliciano EM, Kroenke CH, Meyerhardt JA, Prado CM, Bradshaw PT, Dannenberg AJ, Kwan ML, Xiao J, Quesenberry C, Weltzien EK, Castillo AL, Caan BJ (2016) Metabolic dysfunction, obesity, and survival among patients with early-stage colorectal cancer. J Clin Oncol 34(30):3664–3671Google Scholar
  17. Chan AT, Giovannucci EL (2010) Primary prevention of colorectal cancer. Gastroenterology 138(6):2029–2043 e10PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chang D, Wang F, Zhao Y-S, Pan H-Z (2008b) Evaluation of oxidative stress in colorectal cancer patients. Biomed Environ Sci 21(4):286–289PubMedCrossRefGoogle Scholar
  19. Chang D, Wang F, Zhao YS, Pan HZ (2008a) Evaluation of oxidative stress in colorectal cancer patients. Biomed Environ Sci 21(4):286–289PubMedCrossRefGoogle Scholar
  20. Chawla N, Butler EN, Lund J,Warren JL, Harlan LC, Yabroff KR (2013) Patterns of colorectal cancer care in Europe, Australia, and New Zealand. J Natl Cancer Inst Monogr 36Google Scholar
  21. Cheng ZY, Li YZ (2007) What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update. Chem Rev 107(3):748–766PubMedCrossRefGoogle Scholar
  22. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G3Tand A3C substitutions. J Biol Chem 267:166PubMedGoogle Scholar
  23. Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V (2013) Nitric oxide and cancer: a review. World Journal of Surgical Oncology 11:118PubMedCrossRefGoogle Scholar
  24. Dalle-Donne I, Rossi R, Giustarini D et al (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38PubMedCrossRefGoogle Scholar
  25. Das S, Mahapatra SK, Gautam N, Das A, Roy S (2007) Oxidative stress in lymphocytes, neutophils, and serum of oral cavity cancer patients: modulatory array of L-glutamine. Support Care Cancer 15:1399–1405PubMedCrossRefGoogle Scholar
  26. de Vita VT Jr, Hellman S, Rosenberg SA (2001) Cancer, principles and practice of oncology, 6th edn. Lippincott Williams and Wilkins, New YorkGoogle Scholar
  27. Dix TA, Aikens J (1993) Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol 6(1):2–18 View at Publisher · View at Google Scholar · View at ScopusPubMedCrossRefGoogle Scholar
  28. Dizdaroglu M, Olinski R, Doroshow JH, Akman SA (1993) Modification of DNA bases in chromatin of intact target human cells by activated human polymorphonuclear leukocytes. Cancer Res 53:1269PubMedGoogle Scholar
  29. Durackova Z. 2009 Some current insights into oxidative stress. Physiol Res.Google Scholar
  30. Erata GO, Kanbagli O, Durlanik O, Bulut T, Toker G, Uysal M (2005) Induced oxidative stress and decreased expression of inducible heat shock protein 70 (ihsp70) in patients with colorectal adenocarcinomas. Jpn J Clin Oncol 35:74–78CrossRefGoogle Scholar
  31. Erdelyi I, Levenkova N, Lin EY et al (2009) Western-style diets induce oxidative stress and dysregulate immune responses in the colon in a mouse model of sporadic colon cancer. J Nutr 139(11):2072–2078PubMedPubMedCentralCrossRefGoogle Scholar
  32. Esterbauer H, Schaur RJ, Zollner H (1991) View at Publisher · View at Google Scholar · View at Scopus Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128PubMedCrossRefGoogle Scholar
  33. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386PubMedCrossRefGoogle Scholar
  34. Femia AP, Caderni G, Vignali F et al (2005) Effect of polyphenolic extracts from red wine and 4-OH-coumaric acid on 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Eur J Nutr 44(2):79–84PubMedCrossRefGoogle Scholar
  35. Feng CW, Wang LD, Jiao LH, Liu B, Zheng S, Xie XJ (2002) Expression of p53, inducible nitric oxide synthase and vascular endothelial growth factor in gastric precancerous and cancerous lesions: correlation with clinical features. BMC Cancer 2(8):1–7Google Scholar
  36. Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A, Levy S (2008) The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 477(2):183–195PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880PubMedCrossRefGoogle Scholar
  38. Friguet B (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 580(12):2910–2916PubMedCrossRefGoogle Scholar
  39. Gackowski D, Banaszkiewicz Z, Rozalski R, Jawien A, Olinski R (2002) Persistent oxidative stress in colorectal carcinoma patients. Int J Cancer 101:395–397PubMedCrossRefGoogle Scholar
  40. Gomez-Cabrera LL, Ji MC, Vina J (2007) Role of nuclear factor 휅B and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation. Appl Physiol Nutr Metab 32(5):930–935PubMedCrossRefGoogle Scholar
  41. Goodman M, Bostick RM, Dash C et al (2008) A summary measure of pro- and anti-oxidant exposures and risk of incident, sporadic, colorectal adenomas. Cancer Causes Control 19(10):1051–1064PubMedCrossRefGoogle Scholar
  42. Grune T, Merker K, Sandig G, Davies KJA (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305(3):709–718PubMedCrossRefGoogle Scholar
  43. Halliwell B (1997) What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo. FEBS Lett 411(2–3):157–160PubMedCrossRefGoogle Scholar
  44. Halliwell B. and. Gutteridge J. M. C 1989, Free radical biology and medicine, Oxford Calendron PressGoogle Scholar
  45. Hope ME, Hold GL, Kain R, El-Omar EM (2005a) Sporadic colorectal cancer—role of the commensal microbiota. FEMS Microbiol Lett 244(1):1–7PubMedCrossRefGoogle Scholar
  46. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285PubMedCrossRefGoogle Scholar
  47. Huycke MM, Moore DR (2002) In vivo production of hydroxyl radical by enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radic Biol Med 33(6):818–826PubMedCrossRefGoogle Scholar
  48. Hwang TS, Choi HK, Han HS (2007) Differential expression of manganese superoxide dismutase, copper/zinc superoxide dismutase, and catalase in gastric adenocarcinoma and normal gastric mucosa. Eur J Surg Oncol 33:474–479PubMedCrossRefGoogle Scholar
  49. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jaruga P, Zastawny TH, Skokowski J, Dizdaroglu M, Olinski R (1994) Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Lett 341:59PubMedCrossRefGoogle Scholar
  51. Jones R, Adel-Alvarez LA, Alvarez OR, Broaddus R, Das S (2003) Arachidonic acid and colorectal carcinogenesis. Mol Cell Biochem 253(1–2):141–149PubMedGoogle Scholar
  52. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19(3):419–421PubMedGoogle Scholar
  53. Kekec Y, Paydas S, Tuli A, Zorludemir S, Sakman G, Seydaoglu G (2009) Antioxidant enzyme levels in cases with gastrointestinal cancer. Eur J Intern Med 20:403–406PubMedCrossRefGoogle Scholar
  54. Khan MR, Bari H, Raza SA (2011) Early postoperative outcome after curative colorectal cancer surgery. Singapore Med J 52(3):195–200Google Scholar
  55. Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Patents Inflamm Allergy Drug Discov 3(1):73–80CrossRefGoogle Scholar
  56. Kuratko CN, Constante BJ (1998) Linoleic acid and tumor necrosis factor-훼 increase manganese superoxide dismutase activity in intestinal cells. Cancer Lett 130(1–2):191–196PubMedCrossRefGoogle Scholar
  57. Leufkens AM, van Duijnhoven FJ, Woudt SH, Siersema PD, Jenab M, Jansen EH, Pischon T, Tjønneland A, Olsen A, Overvad K, Boutron-Ruault MC, Clavel-Chapelon F, Morois S, Palli D, Pala V, Tumino R, Vineis P, Panico S, Kaaks R, Lukanova A, Boeing H, Aleksandrova K, Trichopoulou A, Trichopoulos D, Dilis V, Peeters PH, Skeie G, González CA, Argüelles M, Sánchez MJ, Dorronsoro M, Huerta JM, Ardanaz E, Hallmans G, Palmqvist R, Khaw KT, Wareham N, Allen NE, Crowe FL, Fedirko V, Norat T, Riboli E, Bueno-de-Mesquita HB (2012) Biomarkers of oxidative stress and risk of developing colorectal cancer: a cohort-nested case-control study in the European prospective investigation into cancer and nutrition. Am J Epidemiol 175(7):653–663PubMedCrossRefGoogle Scholar
  58. Loft S, Poulsen HE (1995) Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods Enzymol 300:166CrossRefGoogle Scholar
  59. Loft S, Møller P, Cooke MS et al (2008) Antioxidant vitamins and cancer risk: is oxidative damage to DNA a relevant biomarker? Eur J Nutr 47(suppl 2):19–28PubMedCrossRefGoogle Scholar
  60. Longnecker MP, Gerhardsson le Verdier M, Frumkin H et al (1995) A case-control study of physical activity in relation to risk of cancer of the right colon and rectum in men. Int J Epidemiol 24:42–50PubMedCrossRefGoogle Scholar
  61. Lü JM, Lin PH, Yao Q, Chen C (2010) View at Publisher · View at Google Scholar · View at Scopus Chemical and molecular mechanisms of antioxidants experimental approaches and model systems. J Cell Mol Med 14(4):840–860PubMedCrossRefGoogle Scholar
  62. Ma Y, Lin Z, Rong S, Hongyan Q, Zhang Y, Dong C, Pan H, Wang W (2013) Relation between gastric cancer and protein oxidation, DNA damage, and lipid peroxidation. Oxidative Med Cell Longev 2013:543760–543766Google Scholar
  63. Marchesi JR, Dutilh BE, Hall N et al (2011) Towards the human colorectal cancer microbiome. PLoS One 6:e20447PubMedPubMedCentralCrossRefGoogle Scholar
  64. Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21(3):361–370PubMedCrossRefGoogle Scholar
  65. McKeown-Eyssen G (1994) Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol Biomark Prev 3:687–695Google Scholar
  66. Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674(1–2):36–44PubMedCrossRefGoogle Scholar
  67. Moore WE, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61:3202–3207PubMedPubMedCentralGoogle Scholar
  68. Murdolo G, Piroddi M, Luchetti F et al (2013) Oxidative stress and lipid peroxidation by-products at the crossroad between adipose organ dysregulation and obesity-linked insulin resistance. Biochimie 95(3):585–594PubMedCrossRefGoogle Scholar
  69. Nathan FM, Singh VA, Dhanoa A, Palanisamy UD (2011) Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma. BMC Cancer 11:382PubMedPubMedCentralCrossRefGoogle Scholar
  70. Newsholme EA, Parry-Billings M 1994. Effects of exercise on the immune system. In: Bouchard C, Shephard RJ, Stephens T, eds. Physical activity, fitness and health: international proceedings and consensus statement. Champaign, IL: Human Kinetics 451–5.Google Scholar
  71. Noda N, Wakasugi H (2001) Cancer and oxidative stress. JMAJ 44(12):535–539Google Scholar
  72. Obtułowicz T, Winczura A, Speina E et al (2010a) Aberrant repair of etheno-DNA adducts in leukocytes and colon tissue of colon cancer patients. Free Radic Biol Med 49(6):1064–1071PubMedCrossRefGoogle Scholar
  73. Ohshima H, Friesen M, Brouet I, Bartsch H (1990) Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food Chem Toxicol 28(9):647–652PubMedCrossRefGoogle Scholar
  74. Olinski R, Zastawny TH, Budzbon J, Skokowski J, Zegarski W, Dizdaroglu M (1992) DNA base modifications in chromatin of human cancerous tissues. FEBS Lett 193:193CrossRefGoogle Scholar
  75. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelial-derived relaxing factor. Nature 327:524–526PubMedCrossRefGoogle Scholar
  76. Pandey BN, Mishra KP (2003) In-vitro studies on radiation induced membrane oxidative damage in apoptotic death thymocytes. International Journal of Low Radiation 1:113–119CrossRefGoogle Scholar
  77. Perše M 2013 Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? BioMed Res Int.1–9Google Scholar
  78. Piechota-Polanczyk A, Fichna J (2014) Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedeberg's Arch Pharmacol 387:605–620CrossRefGoogle Scholar
  79. Pignatelli B, Bancel B, Esteve J et al (1998a) Inducible nitric oxide synthase, anti-oxidant enzymes and helicobacter pylori infection in gastritis and gastric precancerous lesions in humans. Eur J Cancer Prev 7:439–447PubMedCrossRefGoogle Scholar
  80. Pizzimenti S, Toaldo C, Pettazzoni P, Dianzani MU, Barrera G (2010) View at Publisher · View at Google Scholar · View at Scopus The “two-faced” effects of reactive oxygen species and the lipid peroxidation product 4-hydroxynonenal in the hallmarks of cancer. Cancers 2(2):338–363PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rainis T, Maor I, Lanir A, Shnizer S, Lavy A (2007) Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Dig Dis Sci 52:526–530PubMedCrossRefGoogle Scholar
  82. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked?. Free Radic Biol Med 49(11):1603–1616Google Scholar
  83. Riess ML, Camara AKS, Kevin LG, An J, Stowe DF (2004) View at Publisher · View at Google Scholar · View at Scopus Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2 +] levels during short-term 17 °C ischemia in intact hearts. Cardiovasc Res 61(3):580–590PubMedCrossRefGoogle Scholar
  84. Romano AD, Serviddio G, de Matthaeis A, Bellanti F (2010) Vendemiale G. Oxidative stress and aging J Nephrol 23(Suppl 15):S29–S36PubMedGoogle Scholar
  85. Ross GM (1999) Induction of cell death by radiotherapy. Endocrine-Related Cancer 6(1):41–44PubMedCrossRefGoogle Scholar
  86. Roy D, Liehr JG (1989) Changes in activities of free radical detoxifying enzymes in kidneys of male Syrian hamsters treated with estradiol. Cancer Res 49:1475–1480PubMedGoogle Scholar
  87. Sayre LM, Sha W, Xu G et al (1996) Immunochemical evidence supporting 2-pentylpyrrole formation on proteins exposed to 4-hydroxy-2-nonenal. Chem Res Toxicol 9(7):1194–1201 View at Publisher · View at Google Scholar · View at ScopusPubMedCrossRefGoogle Scholar
  88. Scanlan PD, Shanahan F, Marchesi JR (2009) Culture-independent analysis of desulfovibrios in the human distal colon of healthy, colorectal cancer and polypectomized individuals. FEMS Microbiol Ecol 69:213e221CrossRefGoogle Scholar
  89. Sharma A, Rajappa M, Saxena A, Sharma M (2007) Antioxidant status in advanced cervical cancer patients undergoing neoadjuvant chemoradiation. Br J Biomed Sci 64:23–27PubMedCrossRefGoogle Scholar
  90. Shmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanisms of suppression of T cell function in advanced cancer patients. Cancer Res 61:4756Google Scholar
  91. Skrzydlewska E, Stankiewicz A, Sulkowska M, Sulkowski S, Kasacka I (2001) Antioxidant status and lipid peroxidation in colorectal cancer. J. Toxicol. Environ. Health A 64:213–222Google Scholar
  92. Slattery ML, Potter JD, Caan BJ et al (1997) Energy balance and colon cancer—beyond physical activity. Cancer Res 57:75–80PubMedGoogle Scholar
  93. Slattery ML, Edwards S, Curtin K, Ma K, Edwards R, Holubkov R, Schaffer D (2003) Physical activity and colorectal cancer. Am J Epi demiol 158:214–224CrossRefGoogle Scholar
  94. Soares-Miranda L, Abreu S, Silva M, Peixoto A, Ramalho R, da Silva PC, Costa C, Teixeira JP, Gonçalves C, Moreira P, Mota J, Macedo G 2016. Cancer Survivor Study (CASUS) on colorectal patients: longitudinal study on physical activity, fitness, nutrition, and its influences on quality of life, disease recurrence, and survival. Rationale and design. Int J Colorectal Dis. 11Google Scholar
  95. Solier S, Zhang YW, Ballestrero A, Pommier Y, Zoppoli G (2012) DNA damage response pathways and cell cycle checkpoints in colorectal cancer: current concepts and future perspectives for targeted treatment. Curr Cancer Drug Targets 12(4):356–371PubMedCrossRefGoogle Scholar
  96. Sparmann A, Bar-Sagi D (2004) RAS-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458PubMedCrossRefGoogle Scholar
  97. Sreevalsan S, Safe S (2013) Reactive oxygen species and colorectal cancer. Curr Colorectal Cancer Rep 9(4):350–357PubMedPubMedCentralCrossRefGoogle Scholar
  98. Stadtman ER, Berlett BS (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30(2):225–243PubMedCrossRefGoogle Scholar
  99. Strzelczyk JK, Wielkoszyński T, Krakowczyk Ł, Adamek B, Zalewska-Ziob M, Gawron K, Kasperczyk J, Wiczkowski A 2012. The activity of antioxidant enzymes in colorectal adenocarcinoma and corresponding normal mucosa.Vol. 59, No 4 549–556Google Scholar
  100. Sun J, Kato I (2016) Gut microbiota, inflammation and colorectal cancer. Genes & Diseases 3:130–143CrossRefGoogle Scholar
  101. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794PubMedGoogle Scholar
  102. Thune I, Lund E (1996) Physical activity and risk of colorectal cancer in men and women. Br J Cancer 73:1134–1140PubMedPubMedCentralCrossRefGoogle Scholar
  103. Touyz RM (2004) Reactive oxygen species and angiotensin II signaling in vascular cells—implications in cardiovascular disease. Braz J Med Biol Res 37:1263–1273PubMedCrossRefGoogle Scholar
  104. Tsuboi H, Kouda K, Takeuchi H et al (1998) 8-Hydroxydeoxyguanosine in urine as an index of oxidative damage to DNA in the evaluation of atopic dermatitis. Br J Dermatol 138:1033–1035PubMedCrossRefGoogle Scholar
  105. Tsunada S, Iwakiri R, Ootani H, Aw TY, Fujimoto K (2003) Redox imbalance in the colonic mucosa of ulcerative colitis. Scand J Gastroenterol 38:1002–1003PubMedCrossRefGoogle Scholar
  106. Uchida K (2003a) 4-hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42(4):318–343 View at Publisher · View at Google Scholar · View at ScopusPubMedCrossRefGoogle Scholar
  107. Uchida K (2003b) 4-hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42(4):318–343PubMedCrossRefGoogle Scholar
  108. Uchida K, Kumagai T (2003) 4-hydroxy-2-nonenal as a COX-2 inducer. Mol Asp Med 24(4–5):213–218CrossRefGoogle Scholar
  109. Uchida K, Szweda LI, Chae HZ, Stadtman ER (1993) Immunochemical detection of 4-hydroxynonenal protein adducts in oxidized hepatocytes. Proc Natl Acad Sci U S A 90(18):8742–8746 View at Google Scholar · View at ScopusPubMedPubMedCentralCrossRefGoogle Scholar
  110. Upadhya S, Upadhya SS, Mohan K, Vanajakshamma K, Kunder M, Mathias S (2004) Oxidant-antioxidant status in colorectal cancer patients before and after treatment Indian. Journal of Clinical Biochemistry 19(2):80–83CrossRefGoogle Scholar
  111. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  112. Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS (1992) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254:1001–1003CrossRefGoogle Scholar
  113. Xu G, Liu Y, Sayre LM (1999) Independent synthesis, solution behavior, and studies on the mechanism of formation of a primary amine-derived fluorophore representing cross-linking of proteins by (E)-4-hydroxy-2-nonenal. J Org Chem 64(16):5732–5745 View at Publisher · View at Google Scholar · View at ScopusCrossRefGoogle Scholar
  114. Yagihashi N, Kasajima H, Sugai S, Matsumoto K, Ebina Y, Morita T, Murakami T, Yagihashi S (2001) Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Arch 436(2):109–114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of ZoologyThe University of BurdwanBurdwanIndia

Personalised recommendations