Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 390, Issue 2, pp 149–161 | Cite as

Exogenous daytime melatonin modulates response of adolescent mice in a repeated unpredictable stress paradigm

  • Adejoke Yetunde Onaolapo
  • Ajibola Nurudeen Adebayo
  • Olakunle James OnaolapoEmail author
Original Article


The immediate and short-term behavioural and physiological implications of exposure to stressful scenarios in the adolescent period are largely unknown; however, increases in occurrence of stress-related physiological and psychological disorders during puberty highlight the need to study substances that may modulate stress reactivity during a crucial stage of maturation. Seven groups of mice (12–15 g each) were administered distilled water (DW) (non-stressed and stressed controls), sertraline (10 mg/kg), diazepam (2 mg/kg) or one of three doses of melatonin (5, 10 and 15 mg/kg). Mice were exposed to 30 min of chronic mild stress (25 min of cage shaking, cage tilting, handling and 5 min of forced swimming in tepid warm water at 25 °C, in a random order) after administration of DW or drugs, daily for 21 days. Behavioural assessments were conducted on day 1 and day 21 (after which mice were sacrificed, blood taken for estimation of corticosterone levels and brain homogenates used for estimation of antioxidant activities). Administration of melatonin resulted in an increase in horizontal locomotion and self-grooming, while rearing showed a time-dependent increase, compared to non-stress and stress controls. Working memory improved with increasing doses of melatonin (compared to controls and diazepam); in comparison to setraline however, working memory decreased. A dose-related anxiolytic effect is seen when melatonin is compared to non-stressed and stressed controls. Melatonin administration reduced the systemic/oxidant response to repeated stress. Administration of melatonin in repeatedly stressed adolescent mice was associated with improved central excitation, enhancement of working memory, anxiolysis and reduced systemic response to stress.


Anxiety Memory Novelty-induced behaviours Chronic stress Neurohormone 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Source of funding

This research did not receive any specific grant from agencies in the public, commercial or not-for-profit sectors.


  1. Antolin I, Rodriguez C, Sainz RM (1996) Neurohormone melatonin prevents cell damage effect on gene expression for antioxidant enzymes. FASEB J 10:882–889PubMedGoogle Scholar
  2. Atchley D (2011) The time-course of the effects of stress on behavior in rodents. Eukaryon 7:1–13 Lake Forest CollegeGoogle Scholar
  3. Bachurin S, Oxenkrug G, Lermontova N, Afanasiev A, Beznosko B, Vankin G, Shevtzova E, Mukhina T, Serkova T (1999) N-Acetylserotonin, melatonin and their derivatives improve cognition and protect against β-amyloid-induced neurotoxicity. Annals New York Acad Sci 890:155–166CrossRefGoogle Scholar
  4. Barden N, Shink E, Labbe M, Vacher R, Rochford J, Mocaer E (2005) Antidepressant action of agomelatine (S 20098) in a transgenic mouse model. Prog Neuro-Psychopharmacol Biol Psychiatry 29:908–916. doi: 10.1016/j.pnpbp.2005.04.032 CrossRefGoogle Scholar
  5. Baydas G, Nedzvetsky VS, Nerush PA, Kırıchenko SV, Demchenko HM (2002) A novel role for melatonin: regulation of the expression of cell adhesion molecules in the hippocampus, cortex and cerebellum. Neurosci Lett 326:109–112CrossRefPubMedGoogle Scholar
  6. Bielajew C, Konkle AT, Merali Z (2002) The effects of chronic mild stress on male Sprague-Dawley and long Evans rats: I. Biochemical and physiological analyses. Behav Brain Res 136:583–592CrossRefPubMedGoogle Scholar
  7. Blanch AK, Shern DL, Steverman SL (2014) Toxic stress, behavioral health, and the next major era in public health. Mental Health America 1–39Google Scholar
  8. Blanchard DC, Cholvanich P, Blanchard RJ, Clow DW, Hammer RP Jr, Rowlett JK (1991) Serotonin, but not dopamine, metabolites are increased in selected brain regions of subordinate male rats in a colony environment. Brain Res 568:61–66CrossRefPubMedGoogle Scholar
  9. Blanchard B, Pompon D, Ducrocq C (2000) Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res 29:184–192. doi: 10.1034/j.1600-079X.2000.290308.x CrossRefPubMedGoogle Scholar
  10. Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA (2008) Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacol 33:320–331CrossRefGoogle Scholar
  11. Bromme HJ, Morke W, Peschke E, Ebelt H (2000) Scavenging effect of melatonin on hydroxyl radicals generated by alloxan. J Pineal Res 29:201–208CrossRefPubMedGoogle Scholar
  12. Brotto LA, Barr AM, Gorzalka BB (2000) Sex differences in forced-swim and open-field test behaviours after chronic administration of melatonin. Eur J Pharmacol 402:87–93CrossRefPubMedGoogle Scholar
  13. Chaby LE, Sheriff MJ, Hirrlinger AM, Lim J, Fetherston TB, Braithwaite VA (2015) Does chronic unpredictable stress during adolescence affect spatial cognition in adulthood? PLoS One. doi: 10.1371/journal.pone.0141908 PubMedPubMedCentralGoogle Scholar
  14. Conrad KL, Winder DG (2011) Altered anxiety-like behavior and long-term potentiation in the bed nucleus of the stria terminalis in adult mice exposed to chronic social isolation, unpredictable stress and ethanol beginning in adolescence. Alcohol 45:585–593. doi: 10.1016/j.alcohol.2010.11.002 CrossRefPubMedGoogle Scholar
  15. Conrad CD, Grote KA, Hobbs RJ, Ferayorni A (2003) Sex differences in spatial and non-spatial Y-maze performance after chronic stress. Neurobiol Learn Mem 79:32–40CrossRefPubMedGoogle Scholar
  16. Danet M, Lapiz-Bluhm S, Morilak DA (2010) A cognitive deficit induced in rats by chronic intermittent cold stress is reversed by chronic antidepressant treatment. Int J Neuropsychopharmacol 13:997–1009CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical revelance. Biomed Pharmacother 60:97–108CrossRefPubMedGoogle Scholar
  18. Golombeck DA, Escolar E, Cardinali DP (1991) Melatonin-induced depression of locomotor activity in hamsters: time-dependency and inhibition by the central type benzodiazepine antagonist Ro 15-1788. Physiol Behav 49:1091–1097CrossRefGoogle Scholar
  19. Grippo AJ, Sullivan NR, Damjanoska KJ, Crane JW, Carrasco GA, Shi J (2005) Chronic mild stress induces behavioural and physiological changes, and may alter serotonin 1A receptor function, in male and cycling female rats. Psychopharmacol (Berl) 179:769–780CrossRefGoogle Scholar
  20. Guesdon V, Malpaux B, Delagrange P, Spedding M, Cornilleau F, Chesneau D, Haller J, Chaillou E (2013) Rapid effects of melatonin on hormonal and behavioral stressful responses in ewes. Psychoneuroendocrinology 38(8):1426–1434. doi: 10.1016/j.psyneuen.2012.12.011 CrossRefPubMedGoogle Scholar
  21. Gupta M, Gupta YK, Agarwal S, Kalaivani M, Kohli K (2004) Effects of add-on melatonin administration on antioxidant enzymes in children with epilepsy taking carbamazepine monotherapy: a randomized, double-blind, placebo-controlled trial. Epilepsia 45(12):1636–1639CrossRefPubMedGoogle Scholar
  22. Haridas S, Kumar M, Manda K (2013) Melatonin ameliorates chronic mild stress induced behavioral dysfunctions in mice. Physiol Behav 119:201–207CrossRefPubMedGoogle Scholar
  23. Holsboer F, Barden N (1996) Antidepressants and hypothalamic–pituitary–adrenocortical regulation. Endocr Rev 17:187–205CrossRefPubMedGoogle Scholar
  24. Huang C-c, Lai C-j, Tsai M-h, Wu Y-c, Chen K-t, Jou M-j, Fu P-i, Wu C-h, Wei I-H (2015) Effects of melatonin on the nitric oxide system and protein nitration in the hypobaric hypoxic rat hippocampus BMC Neurosci 16:61. doi:  10.1186/s12868-015-0199-6
  25. Hutchinson KM, McLaughlin KJ, Wright RL, Bryce Ortiz J, Anouti DP, Mika A, Diamond DM, Conrad CD (2012) Environmental enrichment protects against the effects of chronic stress on cognitive and morphological measures of hippocampal integrity. Neurobiol Learn Mem 97(2):250–260CrossRefPubMedGoogle Scholar
  26. Ipser JC, Stein DJ, Hawkridge S (2009) Pharmacotherapy for anxiety disorders in children and adolescents. Cochrane Database Syst Rev 3(3):CD005170Google Scholar
  27. Jacobson-Pick S, Audet MC, Nathoo N, Anisman H (2011) Stressor experiences during the juvenile period increase stressor responsivity in adulthood: transmission of stressor experiences. Behav Brain Res 216:365–374CrossRefPubMedGoogle Scholar
  28. Karakas A, Coskun H (2012) Intraamygdalar melatonin administration and pinealectomy affect anxiety like behavior and spatial memory “Neuroendocrinology and Behaviour”, Tomiki Sumiyoshi (ed), ISBN 978–953–51-0740-8.
  29. Katz RJ (1982) Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav 16:965–968CrossRefPubMedGoogle Scholar
  30. Konakchieva R, Mitev Y, Almeida OF, Patchev VK (1998) Chronic melatonin treatment counteracts glucocorticoid-induced dysregulation of the hypothalamic-pituitary-adrenal axis in the rat. Neuroendocrinol 67:171–180CrossRefGoogle Scholar
  31. Kopp C, Vogel E, Rettori MC, Delagrange P, Renard P, Lesieur D, Misslin R (1999) Antagonistic effects of S 22153, a new MT1 and MT2 receptor ligand, on the neophobia-reducing properties of melatonin in Balb/c mice. Pharmacol Biochem Behav 64:131–136CrossRefPubMedGoogle Scholar
  32. Kring AM, Davison GC, Neale JM, Johnson SL (2007) Abnormal psychology (10 ed.) John Wiley and sonsGoogle Scholar
  33. Lapiz-Bluhm MD (2014) Impact of stress on prefrontal glutamatergic, monoaminergic and cannabinoid systems. Curr Top Behav Neurosci 18:45–66CrossRefPubMedGoogle Scholar
  34. Lepsch LB, Gonzalo LA, Magro FJ, Delucia R, Scavone C, Planeta CS (2005) Exposure to chronic stress increases the locomotor response to cocaine and the basal levels of corticosterone in adolescent rats. Addict. Biol. 10 251–256. doi: 10.1080/13556210500269366
  35. Loiseau F, Bihan CL, Hamon M, Thiebot MH (2006) Effects of melatonin and agomelatine in anxiety-related procedures in rats: interaction with diazepam. Eur Neuropsychopharmacol 16:417–428CrossRefPubMedGoogle Scholar
  36. MacMillan HL, Fleming JE, Streiner DL, Lin E, Boyle MH, Jamieson E (2001) Childhood abuse and lifetime psychopathology in a community sample. American J Psychiatry 158:1878–1188CrossRefGoogle Scholar
  37. Mantovani M, Pertile R, Calixto JB, Santos AR, Rodrigues AL (2003) Melatonin exerts an antidepressant-like effect in the tail suspension test in mice: evidence for involvement of N-methyl-D-aspartate receptors and the L-arginine-nitric oxide pathway. Neurosci Lett 343:1–4. doi: 10.1016/S0304-3940(03)00306-9 CrossRefPubMedGoogle Scholar
  38. Mao QQ, Ip SP, Ko KM, Tsai SH, Xian YF, Che CT (2009) Effects of peony glycosides on mice exposed to chronic unpredictable stress: further evidence for antidepressant-like activity. Ethnopharmacol 124(2):316–320CrossRefGoogle Scholar
  39. McCormick CM, Smith C, Mathews IZ (2008) Effects of chronic social stress in adolescence on anxiety and neuroendocrine response to mild stress in male and female rats. Behav Brain Res 187:228–238CrossRefPubMedGoogle Scholar
  40. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185. doi: 10.1016/j.ejphar.2007.11.071 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20:1568–1574PubMedGoogle Scholar
  42. Molnar BE, Buka SL, Kessler RC (2001) Child sexual abuse and subsequent psychopathology: results from the national comorbidity survey. American J Public Health 91:753–760CrossRefGoogle Scholar
  43. Moncada C, Arvin B, Le Peillet E, Meldrum BS (1991) Non-NMDA antagonists protect against kainate more than AMPA toxicity in the rat hippocampus. Neurosci Lett 133:287–290. doi: 10.1016/0304-3940(91)90590-P CrossRefPubMedGoogle Scholar
  44. Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, Petre CO (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatr 29:1214–1224CrossRefGoogle Scholar
  45. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25CrossRefPubMedGoogle Scholar
  46. Olcese JM, Cao C, Mori T (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47:82–96CrossRefPubMedGoogle Scholar
  47. Onaolapo OJ, Onaolapo AY, Awe EO, Jibunor N, Oyeleke B, Ogedengbe AJ (2013) Oral artesunate-amodiaquine combination causes anxiolysis and impaired cognition in healthy Swiss mice. IOSR J Pharmacol Biol Sci 7:97–102CrossRefGoogle Scholar
  48. Onaolapo OJ, Onaolapo AY, Akanni AA, Eniafe AL (2014a) Central depressant and nootropic effects of daytime melatonin in mice. Annal Neurosci 21:90–96Google Scholar
  49. Onaolapo OJ, Onaolapo AY, Akinola OR, Anisulowo TO (2014b) Dexamethasone regimens alter spatial memory and anxiety levels in mice. J Behav Brain Sc 4:159–167CrossRefGoogle Scholar
  50. Onaolapo OJ, Onaolapo AY, Akanmu MA, Olayiwola G (2015) Foraging enrichment modulates open field response to monosodium glutamate in mice. Annal Neurosci 22:162–170Google Scholar
  51. Onaolapo AY, Onaolapo OJ, Nwoha PU (2016) Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion. J Chem Neuroanat 78:42–56CrossRefPubMedGoogle Scholar
  52. Papp M, Gruca P, Boyer P, Mocaër E (2003) Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacol 28:694–703. doi: 10.1038/sj.npp.1300091 CrossRefGoogle Scholar
  53. Paredes D, Rada P, Bonilla E, Gonzalez LE, Parada M, Hernandez L (1999) Melatonin acts on the nucleus accumbens to increase acetylcholine release and modify the motor activity pattern of rats. Brain Res 850:14–20CrossRefPubMedGoogle Scholar
  54. Parlakpinar H, Acet A, Gul M, Altinoz E, Esrefoglu M, Colak C (2007) Protective effects of melatonin on renal failure in pinealectomized rats. Int J Urol 14:743–748CrossRefPubMedGoogle Scholar
  55. Pomara N, Willoughby LM, Sidtis JJ, Cooper TB, Greenblatt DJ (2005) Cortisol response to diazepam: its relationship to age, dose, duration of treatment, and presence of generalized anxiety disorder. Psychopharmacol (Berl) 178:1–8. doi: 10.1007/s00213-004-1974-8 CrossRefGoogle Scholar
  56. Pozo D, Reiter RJ, Calvo JR, Guerrero JM (1997) Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 65(3):430–442. doi: 10.1002/(SICI)1097-4644(19970601)65:3<430::AID-JCB12>3.0.CO;2-J CrossRefPubMedGoogle Scholar
  57. Raghavendra V, Kulkarni SK (2000) Melatonin reversal of DA I-induced hypophagia in rats; possible mechanism by suppressing 5-HT 2A receptor mediated activation of HPA axis. Brain Res 860:112–118CrossRefPubMedGoogle Scholar
  58. Rawashdeh O, Maronde E (2012) The hormonal Zeitgeber melatonin: role as a circadian modulator in memory processing. Front Mol Neurosci 5:27CrossRefPubMedPubMedCentralGoogle Scholar
  59. Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen species and nitrogen species. Cell Biochem Biophys 34:237–256CrossRefPubMedGoogle Scholar
  60. Rimmele U, Spillmann M, Bartschi C, Wolf OT, Weber CS, Ehlert U, Wirtz PH (2009) Melatonin improves memory acquisition under stress independent of stress hormone release. Psychopharmacol (Berl) 202:663–672. doi: 10.1007/s00213-008-1344-z CrossRefGoogle Scholar
  61. Romeo RD, Karatsoreos IN, Ali FS, McEwen BS (2007) The effects of acute stress and pubertal development on metabolic hormones in the rat. Stress 10:101–106CrossRefPubMedGoogle Scholar
  62. Sanders MJ, Stevens S, Boeh H (2010) Stress enhancement of fear learning in mice is dependent upon stressor type: effects of sex and ovarian hormones. Neurobiol Learn Mem 94:254–262CrossRefPubMedGoogle Scholar
  63. Schwarzenberger A, Christjani M, Wacker A (2014) Longevity of daphnia and the attenuation of stress responses by melatonin. BMC Physiol 14:8. doi: 10.1186/s12899-014-0008-y CrossRefPubMedPubMedCentralGoogle Scholar
  64. Semercioz A, Onur R, Ogras S, Orhan I (2003) Effects of melatonin on testicular tissue nitric oxide level and antioxidant enzyme activities in experimentally induced left varicocele. Neuro Endocrinol Lett 24:86–90PubMedGoogle Scholar
  65. Shaw JA (2003) Children exposed to war/terrorism. Clin Child Fam Psychol Rev 6:237–246CrossRefPubMedGoogle Scholar
  66. Štrac DS, Muck-Šeler D, Pivac N (2012) The involvement of noradrenergic mechanisms in the suppressive effects of diazepam on the hypothalamic-pituitary-adrenal axis activity in female rats. Croat Med J 53(3):214–223. doi: 10.3325/cmj.2012.53.214 CrossRefGoogle Scholar
  67. Strausbaugh HJ, Dallman MF, Levine JD (1999) Repeated, but not acute, stress suppresses inflammatory plasma extravasation. Proc Natl Acad Sci U S A 96:14629–14634CrossRefPubMedPubMedCentralGoogle Scholar
  68. Szabo C (1996) The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock (Augusta, Ga) 6:79–88. doi: 10.1097/00024382-199608000-00001 CrossRefGoogle Scholar
  69. Tagliari B, Scherer EB, Machado FR, Ferreira AG, Dalmaz C, Wyse AT (2011) Antioxidants prevent memory deficits provoked by chronic variable stress in rats. Neurochem Res 36:2373–2380CrossRefPubMedGoogle Scholar
  70. Taskiran D, Tanyalcin T, Sozmen EY, Peker GO, Gulmen V, Cagli S, Kanit L, Tekeli G, Barcin E, Zileli M, Kutay FZ (2000) The effects of melatonin on the antioxidant systems in experimental spinal injury. Int J Neurosci 104:63–73CrossRefPubMedGoogle Scholar
  71. Torres IL, Gamaro GD, Vasconcellos AP, Silveira R, Dalmaz C (2002) Effects of chronic restraint stress on feeding behaviour and on monoamine levels in different brain structures in rats. Neurochem Res 27:519–525CrossRefPubMedGoogle Scholar
  72. Torres-Farfan C, Richter HG, Rojas-Garcia P, Vergara M, Forcelledo ML, Valladares LE, Torrealba F, Valenzuela GJ, Seron-Ferre M (2003) MT1 melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. J Clin Endocrinol Metab 88:450–458CrossRefPubMedGoogle Scholar
  73. Tzanoulinou S, Riccio O, de Boer MW, Sandi C (2014) Peripubertal stress-induced behavioural changes are associated with altered expression of genes involved in excitation and inhibition in the amygdala. Tranl Psychiatry 4:e410. doi: 10.1038/tp.2014.54 CrossRefGoogle Scholar
  74. Van Oekelen D, Luyten WH, Leysen JE (2003) 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci 72(22):2429–2449CrossRefPubMedGoogle Scholar
  75. Vyas A, Chattarji S (2004) Modulation of different states of anxiety-like behavior by chronic stress. Behav Neurosci 118:1450–1454CrossRefPubMedGoogle Scholar
  76. Wakatsuki A, Okatani Y, Shinohara K, Ikenoue N, Kaneda C, Fukaya T (2001) Melatonin protects fetal rat brain against oxidative mitochondrial damage. J Pineal Res 30:22–28CrossRefPubMedGoogle Scholar
  77. Wan Q, Man HY, Liu F, Braunton J, Braunton J, Niznik HB, Pang SF, Brown GM, Wang TY (1999) Differential modulation of GABA a receptor function by Mel1a and Mel1b receptors. Nat Neurosci 2:401–403CrossRefPubMedGoogle Scholar
  78. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacol (Berl) 93:358–364CrossRefGoogle Scholar
  79. Wright RL, Conrad CD (2005) Chronic stress leaves novelty-seeking behaviour intact while impairing spatial recognition memory in the Y-maze. Stress J 8:151–154. doi: 10.1080/10253890500156663 CrossRefGoogle Scholar
  80. Zurita A, Martijena I, Cuadra G, Brandao ML, Molina V (2000) Early exposure to chronic variable stress facilitates the occurrence of anhedonia and enhanced emotional reactions to novel stressors: reversal by naltrexone retreatment. Behav Brain Res 117:163–171CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Adejoke Yetunde Onaolapo
    • 1
  • Ajibola Nurudeen Adebayo
    • 2
  • Olakunle James Onaolapo
    • 2
    Email author
  1. 1.Department of AnatomyLadoke Akintola University of TechnologyOgbomosoNigeria
  2. 2.Department of Pharmacology and TherapeuticsLadoke Akintola University of TechnologyOsogboNigeria

Personalised recommendations