Skip to main content
Log in

Nerolidol-loaded nanospheres prevent behavioral impairment via ameliorating Na+, K+-ATPase and AChE activities as well as reducing oxidative stress in the brain of Trypanosoma evansi-infected mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of nerolidol-loaded nanospheres (N-NS) on the treatment of memory impairment caused by Trypanosoma evansi in mice, as well as oxidative stress, and Na+, K+-ATPase and acetylcholinesterase (AChE) activities in brain tissue. Animals were submitted to behavioral tasks (inhibitory avoidance task and open-field test) 4 days postinfection (PI). Reactive oxygen species (ROS) and thiobarbituric acid-reactive substance (TBARS) levels and catalase (CAT), superoxide dismutase (SOD), Na+, K+-ATPase and AChE activities were measured on the fifth-day PI. T. evansi-infected mice showed memory deficit, increased ROS and TBARS levels and SOD and AChE activities, and decreased CAT and Na+, K+-ATPase activities compared to uninfected mice. N-NS prevented memory impairment and oxidative stress parameters (except SOD activity), while free nerolidol (N-F) restored only CAT activity. Also, N-NS treatment was able to prevent alterations in Na+, K+-ATPase and AChE activities caused by T. evansi infection. A significantly negative correlation was observed between memory and ROS production (p < 0.001; r = −0.941), as well as between memory and AChE activity (p < 0.05; r = −0.774). On the contrary, a significantly positive correlation between memory and Na+, K+-ATPase activity was observed (p < 0.01; r = 0.844). In conclusion, N-NS was able to reverse memory impairment and to prevent increased ROS and TBARS levels due to amelioration of Na+, K+-ATPase and AChE activities and to activation of the antioxidant enzymes, respectively. These results suggest that N-NS treatment may be a useful strategy to treat memory dysfunction and oxidative stress caused by T. evansi infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd Ellah M (2010) Involvement of free radicals in animal diseases. Comp Clin Pathol 19:615–619

    Article  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Amoah SKS, Dalla Vecchia MT, Pedrini B, Carnhelutti GL, Gonçalves AE, dos Santos DA, Biavatti MW, de Souza MM (2015) Inhibitory effect of sesquiterpene lactones and the sesquiterpene alcohol aromadendrane-4β-10α-diol on memory impairment in a mouse model of Alzheimer. Euro J Pharmacol 759:195–192

    Article  Google Scholar 

  • Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:201–210

    Article  CAS  PubMed  Google Scholar 

  • Baldissera MD, Oliveira CB, Rech VC, Rezer JFP, Sagrillo MR, Alves MP, da Silva APT, Leal DBR, Boligon AA, Athayde ML, Da Silva AS, Mendes RE, Monteiro SG (2014) Treatment with essential oil of Achyrocline satureioides in rats infected with Trypanosoma evansi: relationship between protective effect and tissue damage. Pathol-Res Pract 210:1068–1074

    Article  CAS  PubMed  Google Scholar 

  • Baldissera MD, Rech VC, Da Silva AS, Nishihira VSK, Ianiski FR, Gressler LT, Grando TH, Vaucher RA, Schwertz CI, Mendes RE, Monteiro SG (2015) Relationship between behavioral alterations and activities of adenylate kinase and creatine kinase in brain of rats infected by Trypanosoma evansi. Exp Parasitol 151:96–102

    Article  PubMed  Google Scholar 

  • Baldissera MD, Grando TH, Souza CF, Cossetin LF, Sagrillo MR, Nascimento K, da Silva APT, Dalla Lana DF, Da Silva AS, Stefani LM, Monteiro SG (2016) Nerolidol nanospheres increases its trypanocidal efficacy against Trypanosoma evansi: new approach against diminazene aceturate resistance and toxicity. Exp Parasitol 166:144–149

    Article  CAS  PubMed  Google Scholar 

  • Berlin D, Loeb E, Baneth G (2009) Disseminated central nervous system disease caused by Trypanosoma evansi in a horse. Vet Parasitol 161:316–319

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown P, Patel PR (2014) Nanomedicine: a pharma perspective. WIREs Nanomed Nanobiotechnol 7:125–130

    Article  Google Scholar 

  • Cardiff RD, Miller CH, Munn RJ (2014) Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc 2014:655–658

    PubMed  Google Scholar 

  • Carreño F, Paese K, Silva CM, Guterres SS, Costa TD (2016) Pre-clinical investigation of the modulation of quetiapine plasma pharmacokinetics and tissues biodistribution by lipid-core nanocapsules. J Pharm Biomed Anal 119:152–158

    Article  PubMed  Google Scholar 

  • Chirayu, Pandya KR, Howell AP (2013) Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacology Biol Psychiatry 46:214–223

    Article  Google Scholar 

  • Colpo CB, Monteiro SG, Stainki DR, Colpo ETB, Henriques GB (2005) Natural infection by Trypanosoma evansi in dogs. Cienc Rural 35:717–719

    Article  Google Scholar 

  • Da Silva AS, Monteiro SG, Gonçalves JF, Spanevello R, Oliveira CB, Costa MM, Jaques JAS, Morsch VM, Schetinger MRC, Mazzanti CM, Lopes STA (2011) Acetylcholinesterase activity and lipid peroxidation in the brain and spinal cord of rats infected with Trypanosoma evansi. Vet Parasitol 175:237–244

    Article  CAS  PubMed  Google Scholar 

  • Da Silva AS, Doyle RL, Monteiro SG (2006) Métodos de contenção e confecção de esfregaço sanguíneo para pesquisa de hemoparasitas em ratos e camundongos. Facul Med Vet Zoo Agro 3:83–87

    Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Fessi H, Puiseux J, Devissaguet N, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:1–4

    Article  Google Scholar 

  • Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matté A, Battastini AMO, Pohlmann AR, Guterres SS, Salbego C (2013) Neuroprotective effects of resveratrol against Aβ administration in rats improved by lipid-core nanocapsules. Mol Neurobiol 47:1066–1080

    Article  CAS  PubMed  Google Scholar 

  • Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62:640–555

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (2005) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Hass SE, Bettoni CC, de Oliveira LK, Guterres SS, Dalla Costa T (2009) Nanoencapsulation increases quinine antimalarial efficacy against Plasmodium berghei in vivo. Int J Antimicrob Agents 34:156–161

    Article  Google Scholar 

  • Herrera HM, Davila AM, Norek A, Abreu UG, Souza SS, D’andrea PS, Jansen AM (2004) Enzootiology of Trypanosoma evansi in Pantanal, Brazil. Vet Parasitol 125:263–275

    Article  CAS  PubMed  Google Scholar 

  • Hoppe JB, Coradini K, Frozza RL, Oliveira CM, Meneghetti AB, Bernardi A, Pires ES, Beck RCB, Salbego CG (2013) Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol Learning Mem 106:134–144

    Article  CAS  Google Scholar 

  • Hut RA, Van der Zee EA (2011) The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res 221:466–480

    Article  CAS  PubMed  Google Scholar 

  • Ianiski FR, Alves CB, Ferreira CF, Rech VC, Savegnano L, Wilhelm EA, Luchese C (2016) Meloxicam-loaded nanocapsules as an alternative to improve memory decline in an Alzheimer’s disease model in mice: involvement of Na+, K+-ATPase. Metab Brain Dis 31:793–802

    Article  CAS  PubMed  Google Scholar 

  • Ienco EC, LoGerfo A, Carlesi C, Orsucci D, Ricci G, Siciliano G (2011) Oxidative stress treatment for clinical trials in neurodegenerative diseases. J Alzheimer Dis 24:111–126

    CAS  Google Scholar 

  • Javed H, Azimullah S, Khair SBA, Ojha S, Haque ME (2016) Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neurosci 17:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji ZH, Liu C, Zhao H, Yu XY (2015) Neuroprotective effect of biatractylenolide against memory impairment in D-galactose-induced aging mice. J Mol Neurosci 55:678–683

    Article  CAS  PubMed  Google Scholar 

  • Kanwar JR, Sun X, Punj V, Sriramoju B, Mohan RR, Zhou SF, Chauhan A, Kanwar RK (2012) Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomedicine 8:399–414

    CAS  PubMed  Google Scholar 

  • Kim IY, Hyun CK (2006) Comparative evaluation of the alkaline comet assay with the micronucleus test for genotoxicity monitoring using aquatic organisms. Ecotoxicol Environ Saf 64:288–297

    Article  CAS  PubMed  Google Scholar 

  • Koudou J, Abena AA, Ngaissona P, Bessiére JM (2005) Chemical composition and pharmacological activity of essential oil of Canarium schweinfurthii. Fitot 76:700–703

    Article  CAS  Google Scholar 

  • Lapczynski A, Bhatia SP, Letizia CS, Api AM (2008) Fragrance material review on nerolidol (isomer unspecified). Food Chem Toxicol 46:S2247–S2250

    Google Scholar 

  • Lawler JM, Song W, Demaree SR (2003) Hind limb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35:9–16

    Article  CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem:3170–3175

  • Mohd-Shukri HB, Zainal-Abidin BAH (2011) The effects of nerolidol, allicin and berenil on the morphology of Trypanosoma evansi in mice: a comparative study using light and electron microscopic approaches. Malays Appl Biol 40:25–32

    Google Scholar 

  • Moseley AE, Williams MT, Schaefer TL, Bohanan CS, Neumann JC, Behbehani MM, Vorhees CV, Lingrel JB (2007) Deficiency in Na+, K+-ATPase alpha isoform genes alters spatial learning memory, motor activity, and anxiety in mice. J Neuros 27:616–626

    Article  CAS  Google Scholar 

  • Nogueira Neto JD, de Almeida AAC, Oliveira JS, dos Santos PS, de Souza DP, de Freitas RM (2013) Antioxidant effects of nerolidol in mice hippocampus after open field test. Neurochem Res 38:1861–1870

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analyt Bioc 95:351–358

    Article  CAS  Google Scholar 

  • Pamplona R, Costantini D (2011) Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol 301:R843–R863

    Article  CAS  PubMed  Google Scholar 

  • Pensel PE, Gamboa GU, Fabbri J, Ceballos L, Bruni SS, Alvarez LI, Allemandi D, Benoit JP, Palma SD, Elissondo MC (2015) Cystic echinococcosis therapy: albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice. Acta Trop 152:185–194

    Article  CAS  PubMed  Google Scholar 

  • Robinson TP, Harris RS, Hopkins JS, Williams BG (2002) An example of decision support for trypanosomosis control using a geographical information system is eastern Zambia. IntJ Geogr Inf Sci 16:345–360

    Article  Google Scholar 

  • Rocha JBT, Emanuelli T, Pereira ME (1993) Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437

    CAS  Google Scholar 

  • Rodrigues A, Fighera RA, Souza TM, Schild AL, Barros CS (2009) Neuropathology of naturally occurring Trypanosoma evansi infection in horses. Vet Pathol 46:251–258

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi M, Koseki M, Wakamatsu M, Matsumura E (2006) Effects of systemic administration of beta-casomorphin-5 on learning and memory in mice. Eur J Pharmacol 530:81–87

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Takahashi T, Sumitani K, Takatsu H, Urano S (2010) Glucocorticoid generates ROS to induce oxidative injury in the hippocampus, leading to impairment of cognitive function of rats. J Clin Biochem Nutr 47:224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Correa M, da Rosa MM, Rubin MA, Chitolina MRC, Morsch VM (2009) Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 610:42–48

    Article  CAS  PubMed  Google Scholar 

  • Scuri R, Lombardo P, Cataldo E, Ristori C, Brunelli M (2007) Inhibition of Na+,K+-ATPase potentiates synaptic transmission in tactile sensory neurons of the leech. Euro J Neuros 25:159–167

    Article  Google Scholar 

  • Skou JC, Esmann M (1992) The Na+,K+-ATPase. J Bioenerg Biomebr 24:249–261

    CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  PubMed  Google Scholar 

  • Spanevello R, Mazzanti CM, Schmatz R, Bagatini M, Stefanello N, Kaizer R, Maldonado P, Mazzanti A, Graça DL, Martins TB, Danesi C, Morsch VM, Schetinger MR (2009) Effect of vitamin E on ectonucleotidase activities in synaptosomes and platelets and parameters of oxidative stress in rats experimentally demyelinated. Brain Res Bull 80:45–51

    Article  CAS  PubMed  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  CAS  PubMed  Google Scholar 

  • Wolkmer P, Paim FC, Da Silva CB, Gai BM, Carvalho FB, Da Souza ACG, Da Rosa MM, Da Silva AS, Pereira PR, Lopes STA, Nogueira CW, Rubin MA, Monteiro SG, Mazzanti CM (2013) Trypanosoma evansi infection impairs memory, increased anxiety behaviour and alters neurochemical parameters in rats. Parasitol 140:1432–1441

    Article  CAS  Google Scholar 

  • Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975

    Article  CAS  Google Scholar 

  • Zhang LN, Sun YJ, Pan S, Li JX, Qu YE, Li Y, Wang YL, Gao ZB (2013) Na+,K+-ATPase, a potent neuroprotective modulator against Alzheimer disease. Fundam Clin Pharmacol 27:96–103

    Article  PubMed  Google Scholar 

  • Zhao H, Ji ZH, Liu C, Yu XY (2015) Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats. Neuros 290:485–491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matheus D. Baldissera or Silvia G. Monteiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldissera, M.D., Souza, C.F., Grando, T.H. et al. Nerolidol-loaded nanospheres prevent behavioral impairment via ameliorating Na+, K+-ATPase and AChE activities as well as reducing oxidative stress in the brain of Trypanosoma evansi-infected mice. Naunyn-Schmiedeberg's Arch Pharmacol 390, 139–148 (2017). https://doi.org/10.1007/s00210-016-1313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1313-8

Keywords

Navigation