Skip to main content

In vitro and in silico analysis of the vascular effects of asymmetrical N,N-bis(alkanol)amine aryl esters, novel multidrug resistance-reverting agents

Abstract

Asymmetrical N,N-bis(alkanol)amine aryl esters (FRA77, GDE6, and GDE19) are potent multidrug resistance (MDR) reversers. Their structures loosely remind that of the Ca2+ antagonist verapamil. Therefore, the aim of this study was to investigate their vascular activity in vitro. Their effects on the mechanical activity of fresh and cultured rat aorta rings on Cav1.2 channel current (I Ca1.2) of A7r5 cells and their cytotoxicity on A7r5 and EA.hy926 cells were analyzed. Docking at the rat α1C subunit of the Cav1.2 channel was simulated in silico. Compounds tested were cytotoxic at concentrations >1 μM (FRA77, GDE6, GDE19) and >10 μM (verapamil) in EA.hy926 cells, or >10 μM (FRA77, GDE6, GDE19) and at 100 μM (verapamil) in A7r5 cells. In fresh rings, the three compounds partly antagonized phenylephrine and 60 mM K+ (K60)-induced contraction at concentrations ≥1 and ≥3 μM, respectively. On the contrary, verapamil fully relaxed rings pre-contracted with both agents. In cultured rings, 10 μM GDE6, GDE19, FRA77, and verapamil significantly reduced the contractile response to both phenylephrine and K60. Similarly to verapamil, the three compounds docked at the α1C subunit, interacting with the same amino acids residues. FRA77, GDE6, and GDE19 inhibited I Ca1.2 with IC50 values 1 order of magnitude higher than that of verapamil. FRA77-, GDE6-, and GDE19-induced vascular effects occurred at concentrations that are at least 1 order of magnitude higher than those effectively reverting MDR. Though an unambiguous divergence between MDR reverting and vascular activity is of overwhelming importance, these findings consistently contribute to the design and synthesis of novel and potent chemosensitizers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Brizi C, Santulli C, Micucci M, Budriesi R, Chiarini A, Aldinucci C, Frosini M (2016) Neuroprotective effects of Castanea sativa Mill. bark extract in human neuroblastoma cells subjected to oxidative stress. J Cell Biochem 117:510–520

    CAS  Article  PubMed  Google Scholar 

  2. Callaghan R, Luk F, Bebawy M (2014) Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos 42:623–631

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen Z, Shi T, Zhang L, Deng M, Huang C, Hu T, Jiang L, Li J (2016) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett 370:153–164

    CAS  Article  PubMed  Google Scholar 

  4. Cheng RC, Tikhonov DB, Zhorov BS (2009) Structural model for phenylalkylamine binding to L-type calcium channels. J Biol Chem 284:28332–28342

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Cianchetta G, Singleton RW, Zhang M, Wildgoose M, Giesing D, Fravolini A, Cruciani G, Vaz RJ (2005) A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-based 3D-QSAR. J Med Chem 48:2927–2935

    CAS  Article  PubMed  Google Scholar 

  6. Dei S, Coronnello M, Floriddia E, Bartolucci G, Bellucci C, Guandalini L, Manetti D, Romanelli MN, Salerno M, Bello I, Mini E, Teodori E (2014) Multidrug resistance (MDR) reversers: high activity and efficacy in a series of asymmetrical N,N-bis(alkanol) amine aryl esters. Eur J Med Chem 87:398–412

    CAS  Article  PubMed  Google Scholar 

  7. Fransen P, Van Hove CE, Leloup AJ, Martinet W, De Meyer GR, Lemmens K, Bult H, Schrijvers DM (2015) Dissecting out the complex Ca2+-mediated phenylephrine-induced contractions of mouse aortic segments. PLoS One 10:e0121634

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fusi F, Saponara S, Frosini M, Gorelli B, Sgaragli G (2003) L-type Ca2+ channels activation and contraction elicited by myricetin on vascular smooth muscles. Naunyn Schmiedeberg’s Arch Pharmacol 368:470–478

    CAS  Article  Google Scholar 

  9. Fusi F, Ferrara A, Zalatnai A, Molnar J, Sgaragli G, Saponara S (2008) Vascular activity of two silicon compounds, Alis-409 and Alis-421, novel multidrug-resistance reverting agents in cancer cells. Cancer Chemother Pharmacol 61:443–451

    CAS  Article  PubMed  Google Scholar 

  10. Gurney AM (1994) Mechanisms of drug-induced vasodilation. J Pharm Pharmacol 46:242–251

    CAS  Article  PubMed  Google Scholar 

  11. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patchclamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    CAS  Article  PubMed  Google Scholar 

  12. Hoffmann S, Balthasar S, Friedrichs U, Ehren M, Ryan SJ, Wiedemann P (2006) Inhibitory effects of verapamil isomers on the proliferation of choroidal endothelial cells. Graefe’s Arch Clin Exp Ophthalmol 244:376–381

    CAS  Article  Google Scholar 

  13. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Lilly B (2014) We have contact: endothelial cell-smooth muscle cell interactions. Physiology (Bethesda) 29:234–241

    CAS  Google Scholar 

  15. Littlewood TD, Bennett MR (2003) Apoptotic cell death in atherosclerosis. Curr Opin Lipidol 14:469–475

    CAS  Article  PubMed  Google Scholar 

  16. Martelli C, Alderighi D, Coronnello M, Dei S, Frosini M, Le Bozec B, Manetti D, Neri A, Romanelli MN, Salerno M, Scapecchi S, Mini E, Sgaragli G, Teodori E (2009) N,N-bis(cyclohexanol)amine aryl esters: a new class of highly potent transporter-dependent multidrug resistance inhibitors. J Med Chem 52:807–817

    CAS  Article  PubMed  Google Scholar 

  17. Martelli C, Coronnello M, Dei S, Manetti D, Orlandi F, Scapecchi S, Romanelli MN, Salerno M, Mini E, Teodori E (2010) Structure-activity relationships studies in a series of N,N-bis(alkanol)amine aryl esters as P-glycoprotein (P-gp) dependent multidrug resistance (MDR) inhibitors. J Med Chem 53:1755–1762

    CAS  Article  PubMed  Google Scholar 

  18. Martelli C, Dei S, Lambert C, Manetti D, Orlandi F, Romanelli MN, Scapecchi S, Salerno M, Teodori E (2011) Inhibition of P-glycoprotein-mediated multidrug resistance (MDR) by N,N-bis(cyclohexanol)amine aryl esters: further restriction of molecular flexibility maintains high potency and efficacy. Bioorg Med Chem Lett 21:106–109

    CAS  Article  PubMed  Google Scholar 

  19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Murata T, Yamawaki H, Hori M, Sato K, Ozaki H, Karaki H (2001) Chronic vascular toxicity of doxorubicin in an organ-cultured artery. Br J Pharmacol 132:1365–1373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Orlandi F, Coronnello M, Bellucci C, Dei S, Guandalini L, Manetti D, Martelli C, Romanelli MN, Scapecchi S, Salerno M, Menif H, Bello I, Mini E, Teodori E (2013) New structure-activity relationship studies in a series of N,N-bis(cyclohexanol)amine aryl esters as potent reversers of P-glycoprotein-mediated multidrug resistance (MDR). Bioorg Med Chem 21:456–465

    CAS  Article  PubMed  Google Scholar 

  22. Pires MM, Emmert D, Hrycyna CA, Chmielewski J (2009) Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol Pharmacol 75:92–100

    CAS  Article  PubMed  Google Scholar 

  23. Pollman MJ, Naumovski L, Gibbons GH (1999) Vascular cell apoptosis: cell type-specific modulation by transforming growth factor-beta1 in endothelial cells versus smooth muscle cells. Circulation 99:2019–2026

    CAS  Article  PubMed  Google Scholar 

  24. Raaphorst RM, Windhorst AD, Elsinga PH, Colabufo NA, Lammertsma AA, Luurtsema G (2015) Radiopharmaceuticals for assessing ABC transporters at the blood-brain barrier. Clin Pharmacol Ther 97:362–71

  25. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34:1000–1008

    CAS  Article  Google Scholar 

  26. Salabei JK, Balakumaran A, Frey JC, Boor PJ, Treinen-Moslen M, Conklin DJ (2012) Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy. Toxicol Appl Pharmacol 262:265–272

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Saponara S, Gorelli B, Tzankova V, Martelli C, Teodori E, Sgaragli G, Fusi F (2011) The novel potent multidrug resistance inhibitors N,N-bis(cyclohexanol)amine aryl esters are devoid of vascular effects. Pharmacology 88:137–141

    CAS  Article  PubMed  Google Scholar 

  28. Saponara S, Durante M, Spiga O, Mugnai P, Sgaragli G, Huong TT, Khanh PN, Son NT, Cuong NM, Fusi F (2016) Murrayafoline A modulation of rat vascular myocytes Cav1.2 channel: functional, electrophysiological and molecular docking analysis. Br J Pharmacol 173:292–304

    CAS  Article  PubMed  Google Scholar 

  29. Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes BM, Remião F (2015) Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 149:1–123

    CAS  Article  PubMed  Google Scholar 

  30. Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H, Di Pietro A (2014) Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 114:5753–5774

    Article  PubMed  PubMed Central  Google Scholar 

  31. Teodori E, Dei S, Garnier-Suillerot A, Gualtieri F, Manetti D, Martelli C, Romanelli MN, Scapecchi S, Sudwan P, Salerno M (2005) Exploratory chemistry toward the identification of a new class of multidrug resistance reverters inspired by pervilleine and verapamil models. J Med Chem 48:7426–7436

    CAS  Article  PubMed  Google Scholar 

  32. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreding. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsuruo T (1986) Acquired vs innate multidrug resistance and the effect of calcium channel blockers. Prog Clin Biol Res 223:203–216

    CAS  PubMed  Google Scholar 

  34. Wanek T, Mairinger S, Langer O (2013) Radioligands targeting P-glycoprotein and other drug efflux proteins at the blood–brain barrier. J Label Comp Radiopharm 56:68–77

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by MIUR (Futuro in Ricerca 2012, RBFR12SOQ1_001). The authors wish to thank Prof. D. Ghigo (University of Torino, Italy) and Prof. G. Valacchi (University of Ferrara, Italy) for providing A7R5 and EA.hy926 cells line, respectively, and Dr. Marco Sebastiani and Dr. Federica D’Ambrosio for the assistance in some experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Saponara.

Additional information

F. Fusi and M. Durante contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Representative photomicrograph showing morphological changes of A7r5 and EA.hy926 cells treated with 10, 50, and 100 μM FRA77 (panel A), GDE6 (panel B), GDE19 (panel C), and verapamil (panel D) for 24 h. Controls represent DMSO-treated cells. The cytotoxic potential of the compounds were evaluated using the grade scale described in the United States Pharmacopeia 28, edition 2005 (see “Materials and methods”). Control cells maintained their original flattened, spindle-shaped (A7r5), or polygonal (EA.hy926) morphology. Both A7r5 and EA.hy926 cells treated with 10 μM concentration of all compounds still maintain a morphology very close to untreated cells (grade 0). On the contrary, the treatment with either 50 or 100 μM FRA77, GDE6, and GDE19 caused significant changes: cells partially detached and showed the lobulated appearance of apoptotic cells characterized by shrinkage, membrane blebbing, and losing contact with adjacent cells. The density of the adherent cells decreased compared with control conditions, indicating detachment of both A7r5 and EA.hy926 cells exposed to the compounds (grades 2–3). Verapamil did not significantly affect A7r5 cell morphology up to 100 μM concentration, while in EA.hy926 cells it caused apoptotic-like changes, particularly evident at the highest concentration (cells rounding, shrinkage, and severe blebbing, grades 2–3). (OM 5X, scale bar 250 μm) (PPTX 2958 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fusi, F., Durante, M., Spiga, O. et al. In vitro and in silico analysis of the vascular effects of asymmetrical N,N-bis(alkanol)amine aryl esters, novel multidrug resistance-reverting agents. Naunyn-Schmiedeberg's Arch Pharmacol 389, 1033–1043 (2016). https://doi.org/10.1007/s00210-016-1266-y

Download citation

Keywords

  • A7r5 cells
  • Cav1.2 channel current
  • Docking
  • EA.hy926 cells
  • MDR reverter
  • Rat aorta rings