Skip to main content

Advertisement

Log in

Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Metabolic syndrome is defined by a constellation of complex coexisting cardiometabolic risk factors such as hyperglycemia, dyslipidemia, inflammation, abdominal obesity, coagulopathies, and hypertension that raise the risk of diabetes mellitus and cardiovascular disease. Recently, there has been an increasing interest in the use of herbs and natural compounds in prevention and treatment of diseases and a large number of published articles have focused on this issue. Rosmarinus officinalis L. or rosemary (Lamiaceae) is a rich source of phenolic phytochemicals having significant anti-oxidant, anti-inflammatory, hypoglycemic, hypolipidemic, hypotensive, anti-atherosclerotic, anti-thrombotic, hepatoprotective, and hypocholesterolemic effects. The purpose of this review is to highlight the interesting pharmacological effects of rosemary, and its active compounds, and the related mechanisms in the management of metabolic syndrome that are documented in in vitro and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu-Al-Basal MA (2010) Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. J Ethnopharmacol 131:443–450. doi:10.1016/j.jep.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  • Afonso MS, De O Silva AM, Carvalho EB et al (2013) Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutr Metab 10:19. doi:10.1186/1743-7075-10-19

    Article  CAS  Google Scholar 

  • al-Hader AA, Hasan ZA, Aqel MB (1994) Hyperglycemic and insulin release inhibitory effects of Rosmarinus officinalis. J Ethnopharmacol 43:217–221. doi:10.1016/0378-8741(94)90046-9

    Article  CAS  PubMed  Google Scholar 

  • al-Sereiti MR, Abu-Amer KM, Sen P (1999) Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 37:124–130

  • Al Sheyab FM, Abuharfeil N, Salloum L, Hani RB, Awad DS (2012) The effect of rosemary (Rosmarinus officinalis. L) plant extracts on the Immune response and lipid profile in mice. J Biol Life Sci 3:31–58. doi:10.5296/jbls.v3i1.906

    Google Scholar 

  • Alberti KG, Zimmet P, Shaw J (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062. doi:10.1016/s0140-6736(05)67402-8

    Article  PubMed  Google Scholar 

  • Alberti KGMM, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23:469–480. doi:10.1111/j.1464-5491.2006.01858.x

    Article  CAS  PubMed  Google Scholar 

  • Alnahdi HS (2012) Effect of Rosmarinus officinalis extract on some cardiac enzymes of streptozotocin-induced diabetic rats. J Health Sci 2:33–37. doi:10.5923/j.health.20120204.03

    Google Scholar 

  • Amel B (2013) Traditional treatment of high blood pressure and diabetes in Souk Ahras District. J Pharmacogn Phytother 5:12–20. doi:10.5897/JPP11.065

    Google Scholar 

  • Apostolidis E, Kwon YI, Shetty K (2006) Potential of cranberry-based herbal synergies for diabetes and hypertension management. Asia Pac J Clin Nutr 15:433–441

    CAS  PubMed  Google Scholar 

  • Ayaz NO (2012) Antidiabetic and renoprotective effects of water extract of Rosmarinus officinalis in streptozotocin-induced diabetic rat. Afr J Pharm Pharmacol 6:2664–2669. doi:10.5897/AJPP12.319

    Google Scholar 

  • Bakirel T, Bakirel U, Keles OU, Ulgen SG, Yardibi H (2008) In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J Ethnopharmacol 116:64–73. doi:10.1016/j.jep.2007.10.039

    Article  PubMed  Google Scholar 

  • Bergman RN, Ader M (2000) Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab 11:351–356. doi:10.1016/S1043-2760(00)00323-4

    Article  CAS  PubMed  Google Scholar 

  • Birtic S, Dussort P, Pierre FX, Bily AC, Roller M (2015) Carnosic acid. Phytochemistry 115:9–19. doi:10.1016/j.phytochem.2014.12.026

    Article  CAS  PubMed  Google Scholar 

  • Borras-Linares I, Stojanovic Z, Quirantes-Pine R, Arraez-Roman D, Svarc-Gajic J, Fernandez-Gutierrez A, Segura-Carretero A (2014) Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci 15:20585–20606. doi:10.3390/ijms151120585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bower AM, Real Hernandez LM, Berhow MA, de Mejia EG (2014) Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV. J Agric Food Chem 62:6147–6158. doi:10.1021/jf500639f

    Article  CAS  PubMed  Google Scholar 

  • Bustanji Y, Issa A, Mohammad M et al (2010) Inhibition of hormone sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. J Med Plants Res 4:2235–2242. doi:10.5897/JMPR10.399

    Google Scholar 

  • Castro AJ, Frederico MJ, Cazarolli LH et al (2014) Betulinic acid and 1,25(OH)(2) vitamin D(3) share intracellular signal transduction in glucose homeostasis in soleus muscle. Int J Biochem Cell Biol 48:18–27. doi:10.1016/j.biocel.2013.11.020

    Article  PubMed  Google Scholar 

  • Cazzola R, Camerotto C, Cestaro B (2011) Anti-oxidant, anti-glycant, and inhibitory activity against alpha-amylase and alpha-glucosidase of selected spices and culinary herbs. Int J Food Sci Nutr 62:175–184. doi:10.3109/09637486.2010.529068

    Article  CAS  PubMed  Google Scholar 

  • Chae IG, Yu MH, Im NK, Jung YT, Lee J, Chun KS, Lee IS (2012) Effect of Rosemarinus officinalis L. on MMP-9, MCP-1 levels, and cell migration in RAW 264.7 and smooth muscle cells. J Med Food 15:879–886. doi:10.1089/jmf.2012.2162

    Article  PubMed  PubMed Central  Google Scholar 

  • Checker R et al (2012) Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-kappaB, AP-1 and NF-AT. PloS one 7:e31318. doi:10.1371/journal.pone.0031318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L et al (2012) Abietane diterpenoids of Rosmarinus officinalis and their diacylglycerol acyltransferase-inhibitory activity. Food Chem 132:1775–1780

    Article  CAS  Google Scholar 

  • Dickmann LJ, Vandenbrink BM, Lin YS (2012) In vitro hepatotoxicity and cytochrome P450 induction and inhibition characteristics of carnosic acid, a dietary supplement with antiadipogenic properties. Drug Metab Dispos 40:1263–1267. doi:10.1124/dmd.112.044909

    Article  CAS  PubMed  Google Scholar 

  • El-Alfy AT, Ahmed AA, Fatani AJ (2005) Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol Res 52:264–270. doi:10.1016/j.phrs.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  • Emam MA (2012) Comparative evaluation of antidiabetic activity of Rosmarinus officinalis L. and Chamomile recutita in streptozotocin induced diabetic rats. Agric Biol J N Am 3:247–252. doi:10.5251/abjna.2012.3.6.247.252

    Article  Google Scholar 

  • Fahim FA, Esmat AY, Fadel HM, Hassan KF (1999) Allied studies on the effect of Rosmarinus officinalis L. on experimental hepatotoxicity and mutagenesis. J Food Sci Nutr 50:413–427. doi:10.1080/096374899100987

    CAS  Google Scholar 

  • Fernandez LF, Palomino OM, Frutos G (2014) Effectiveness of Rosmarinus officinalis essential oil as antihypotensive agent in primary hypotensive patients and its influence on health-related quality of life. J Ethnopharmacol 151:509–516. doi:10.1016/j.jep.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  • Gaya M, Repetto V, Toneatto J, Anesini C, Piwien-Pilipuk G, Moreno S (2013) Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPARgamma pathways at the onset of the differentiation program. Biochim Biophys Acta 1830:3796–3806. doi:10.1016/j.bbagen.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  • Gugliucci A (2000) Glycation as the glucose link to diabetic complications. J Am Osteopath Assoc 100:621–634

    CAS  PubMed  Google Scholar 

  • Gugliucci A, Menini T (2002) The botanical extracts of Achyrocline satureoides and Ilex paraguariensis prevent methylglyoxal-induced inhibition of plasminogen and antithrombin III. Life Sci 72:279–292. doi:10.1016/S0024-3205(02)02242-7

    Article  CAS  PubMed  Google Scholar 

  • Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP (1992) Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 41:715–722. doi:10.2337/diabetes.41.6.715

    Article  CAS  PubMed  Google Scholar 

  • Herzig S, Long F, Jhala US et al (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183. doi:10.1038/35093131

    Article  CAS  PubMed  Google Scholar 

  • Hosseini A, Hosseinzadeh H (2015) A review on the effects of Allium sativum (Garlic) in metabolic syndrome. J Endocrinol Invest 38:1147–57. doi:10.1007/s40618-015-0313-8

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Karimi G, Noubakht M (2004) Effects of Rosmarinus officinalis L. aerial parts essential oil on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. J Med Plants 3:68–68

    Google Scholar 

  • Hosseinzadeh H, Nassiri-Asl M (2014) Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Invest 37:783–788. doi:10.1007/s40618-014-0096-3

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Nourbakhsh M (2003) Effect of Rosmarinus officinalis L. aerial parts extract on morphine withdrawal syndrome in mice. Phytother Res 17:938–941. doi:10.1002/ptr.1311

    Article  PubMed  Google Scholar 

  • Hosseinzadeh H, Ramezani M, Shahsavand S (2006) (2006) Effect of Rosmarinus officinalis L. aerial parts extract and fractions on morphine withdrawal syndrome in mice. J Med Plants 5:27–35

    CAS  Google Scholar 

  • Hsieh CL, Peng CH, Chyau CC, Lin YC, Wang HE, Peng RY (2007) Low-density lipoprotein, collagen, and thrombin models reveal that Rosemarinus officinalis L. exhibits potent antiglycative effects. J Agric Food Chem 55:2884–2891. doi:10.1021/jf0631833

    Article  CAS  PubMed  Google Scholar 

  • Huang TH-W, Kota BP, Razmovski V, Roufogalis BD (2005) Herbal or natural medicines as modulators of peroxisome proliferator-activated receptors and related nuclear receptors for therapy of metabolic syndrome. Basic Clin Pharmacol Toxicol 96:3–14. doi:10.1111/j.1742-7843.2005.pto960102.x

    Article  CAS  PubMed  Google Scholar 

  • Ibarra A, Cases J, Roller M, Chiralt-Boix A, Coussaert A, Ripoll C (2011) Carnosic acid-rich rosemary (Rosmarinus officinalis L.) leaf extract limits weight gain and improves cholesterol levels and glycaemia in mice on a high-fat diet. Br J Nutr 106:1182–1189. doi:10.1017/s0007114511001620

    Article  CAS  PubMed  Google Scholar 

  • Isomaa B, Almgren P, Tuomi T et al (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabet Care 24:683–689. doi:10.2337/diacare.24.4.683

    Article  CAS  Google Scholar 

  • Javanmardi J, Stushnoff C, Locke E, Vivanco J (2003) Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem 83:547–550

    Article  CAS  Google Scholar 

  • Jayanthy G, Subramanian S (2014) Rosmarinic acid, a polyphenol, ameliorates hyperglycemia by regulating the key enzymes of carbohydrate metabolism in high fat diet—STZ induced experimental diabetes mellitus. Biomed Prev Nutr 4:431–437. doi:10.1016/j.bionut.2014.03.006

    Article  Google Scholar 

  • Jay MA, Ren J (2007) Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr Diabet Rev 3:33–39. doi:10.2174/157339907779802067

    Article  CAS  Google Scholar 

  • Jin S, Cho KH (2011) Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidemic activity in zebrafish. Food Chem Toxicol 49:1521–1529. doi:10.1016/j.fct.2011.03.043

    Article  CAS  PubMed  Google Scholar 

  • Karthik D, Viswanathan P, Anuradha CV (2011) Administration of rosmarinic acid reduces cardiopathology and blood pressure through inhibition of p22phox NADPH oxidase in fructose-fed hypertensive rats. J Cardiovasc Pharmacol 58:514–521. doi:10.1097/FJC.0b013e31822c265d

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Han CH, Lee MY (2014) Enhancement of platelet aggregation by ursolic acid and oleanolic acid. Biomol Ther 22:254–259. doi:10.4062/biomolther.2014.008

    Article  CAS  Google Scholar 

  • Koga K, Shibata H, Yoshino K, Nomoto K (2006) Effects of 50% ethanol extract from rosemary (Rosmarinus officinalis) on α-glucosidase inhibitory activity and the elevation of plasma glucose level in rats, and its active compound. J Food Sci 71:S507–S512. doi:10.1111/j.1750-3841.2006.00125.x

    Article  CAS  Google Scholar 

  • Kwon YI, Vattem DA, Shetty K (2006) Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac J Clin Nutr 15:107–118

    PubMed  Google Scholar 

  • Langin D (2006) Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 53:482–491. doi:10.1016/j.phrs.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  • Larsen TM, Toubro S, Astrup A (2003) PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord 27:147–161. doi:10.1038/sj.ijo.802223

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ et al (2007) Antiplatelet activity of carnosic acid, a phenolic diterpene from Rosmarinus officinalis. Planta Med 73:121–127. doi:10.1055/s-2006-957066

    Article  CAS  PubMed  Google Scholar 

  • Lipina C, Hundal HS (2014) Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cell Signal 26:2343–2349. doi:10.1016/j.cellsig.2014.07.022

    Article  CAS  PubMed  Google Scholar 

  • Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK (2002) Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis 23:983–91. doi:10.1093/carcin/23.6.983

    Article  CAS  PubMed  Google Scholar 

  • Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121:2111–2117. doi:10.1172/JCI57132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martynyuk L, Martynyuk L, Ruzhitska O, Martynyuk O (2014) Effect of the herbal combination Canephron N on diabetic nephropathy in patients with diabetes mellitus: results of a comparative cohort study. J Altern Complement Med 20:472–478. doi:10.1089/acm.2013.0400

    Article  PubMed  Google Scholar 

  • McCue PP, Shetty K (2004) Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac J Clin Nutr 13:101–106

    CAS  PubMed  Google Scholar 

  • Meeran SM, Ahmed A, Tollefsbol TO (2010) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenet 1:101–116. doi:10.1007/s13148-010-0011-5

    Article  CAS  Google Scholar 

  • Miranda PJ, DeFronzo RA, Califf RM, Guyton JR (2005) Metabolic syndrome: definition, pathophysiology, and mechanisms. Am Heart J 149:33–45. doi:10.1016/j.ahj.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki H, Yoshimura T, Aoki N (2012) Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element. Biochem Biophys Res Commun 420:623–627. doi:10.1016/j.bbrc.2012.03.049

    Article  CAS  PubMed  Google Scholar 

  • Naimi M, Tsakiridis T, Stamatatos TC, Alexandropoulos DI, Tsiani E (2015) Increased skeletal muscle glucose uptake by rosemary extract through AMPK activation. Appl Physiol Nutr Metab 40:407–413. doi:10.1139/apnm-2014-0430

    Article  CAS  PubMed  Google Scholar 

  • Nazem F, Farhangi N, Neshat-Gharamaleki M (2015) Beneficial effects of endurance exercise with Rosmarinus officinalis labiatae leaves extract on blood antioxidant enzyme activities and lipid peroxidation in streptozotocin-induced diabetic rats. Can J Diabetes 39:229–234. doi:10.1016/j.jcjd.2014.11.003

    Article  PubMed  Google Scholar 

  • Okamura N, Fujimoto Y, Kuwabara S, Yagi A (1994) High-performance liquid chromatographic determination of carnosic acid and carnosol in Rosmarinus officinalis and Salvia officinalis. J Chromatograph A 679:381–386. doi:10.1016/0021-9673(94)80582-2

    Article  CAS  Google Scholar 

  • Park MY, Mun ST (2014) Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes. Nutr Res Pract 8:516–520. doi:10.4162/nrp.2014.8.5.516

    Article  PubMed  PubMed Central  Google Scholar 

  • Park MY, Sung MK (2015a) Carnosic acid attenuates obesity-induced glucose intolerance and hepatic fat accumulation by modulating genes of lipid metabolism in C57BL/6J-ob/ob mice. J Sci Food Agric 95:828–835. doi:10.1002/jsfa.6973

    Article  CAS  PubMed  Google Scholar 

  • Park MY, Sung MK (2015b) Carnosic acid inhibits lipid accumulation in 3T3-L1 adipocytes through attenuation of fatty acid desaturation. J Cancer Prev 20:41–49. doi:10.15430/jcp.2015.20.1.41

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson DA, Frankel EN, Aeschbach R, German JB (1997) Inhibition of endothelial cell-mediated oxidation of low-density lipoprotein by rosemary and plant phenolics. J Agric Food Chem 45:578–582

    Article  CAS  Google Scholar 

  • Perez-Fons L, Garzon MT, Micol V (2010) Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J Agric Food Chem 58:161–171. doi:10.1021/jf9026487

    Article  CAS  PubMed  Google Scholar 

  • Ramadan KS, Khalil OA, Danial EN, Alnahdi HS, Ayaz NO (2013) Hypoglycemic and hepatoprotective activity of Rosmarinus officinalis extract in diabetic rats. J Physiol Biochem 69:779–783. doi:10.1007/s13105-013-0253-8

    Article  PubMed  Google Scholar 

  • Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends Pharmacol Sci 25:331–336. doi:10.1016/j.tips.2004.03.012

    Article  CAS  PubMed  Google Scholar 

  • Rau O, Wurglics M, Paulke A et al (2006) Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma. Planta Med 72:881–887. doi:10.1055/s-2006-946680

    Article  CAS  PubMed  Google Scholar 

  • Razavi BM, Hosseinzadeh H (2014) A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 37:1031–1040. doi:10.1007/s40618-014-0150-1

    Article  CAS  PubMed  Google Scholar 

  • Rocha J, Eduardo-Figueira M, Barateiro A et al (2015) Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin Pharmacol Toxicol 116:398–413. doi:10.1111/bcpt.12335

    Article  CAS  PubMed  Google Scholar 

  • Romo-Vaquero M, Larrosa M, Yanez-Gascon MJ et al (2014a) A rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: critical and contrasting differences in the obese genotype. Mol Nutr Food Res 58:942–953. doi:10.1002/mnfr.201300524

    Article  CAS  PubMed  Google Scholar 

  • Romo-Vaquero M, Selma MV, Larrosa M et al (2014b) A rosemary extract rich in carnosic acid selectively modulates caecum microbiota and inhibits β-glucosidase activity. Altering fiber and short chain fatty acids fecal excretion in lean and obese female rats. PloS one 9:e94687. doi:10.1371/journal.pone.0094687

    Article  PubMed  PubMed Central  Google Scholar 

  • Romo Vaquero M, Yanez-Gascon MJ, Garcia Villalba R et al (2012) Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid. PLoS One 7:e39773. doi:10.1371/journal.pone.0039773

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahebkar A (2013) Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors 39:197–208. doi:10.1002/biof.1062

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, El Omri A, Kondo S, Han J, Isoda H (2013) Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 238:86–94. doi:10.1016/j.bbr.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  • Scazzocchio B, Vari R, Filesi C et al (2011) Cyanidin-3-O-beta-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARgamma activity in human omental adipocytes. Diabetes 60:2234–2244. doi:10.2337/db10-1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedighi R, Zhao Y, Yerke A, Sang S (2015) Preventive and protective properties of rosemary (Rosmarinus officinalis L.) in obesity and diabetes mellitus of metabolic disorders: a brief review. Curr Opin Food Sci 2:58–70. doi:10.1016/j.cofs.2015.02.002

    Article  Google Scholar 

  • Silva A, Andrade-Wartha E, Carvalho E, Lima A, Novoa AV, Mancini-Filho J (2011) Effect of aqueous rosemary extract (Rosmarinus officinalis L.) on the oxidative stress of diabetic rats. Revista de Nutrição 24:121–130. doi:10.1590/S1415-52732011000100012

    Article  Google Scholar 

  • Sinkovic A, Suran D, Lokar L, Fliser E, Skerget M, Novak Z, Knez Z (2011) Rosemary extracts improve flow-mediated dilatation of the brachial artery and plasma PAI-1 activity in healthy young volunteers. Phytother Res 25:402–407. doi:10.1002/ptr.3276

    CAS  PubMed  Google Scholar 

  • Stefanon B, Pomari E, Colitti M (2015) Effects of Rosmarinus officinalis extract on human primary omental preadipocytes and adipocytes. Exp Biol Med 240:884–95. doi:10.1177/1535370214562341

    Article  CAS  Google Scholar 

  • Tai J, Cheung S, Wu M, Hasman D (2012) Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 19:436–443. doi:10.1016/j.phymed.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Tabuchi T, Tamaki Y, Kosaka K, Takikawa Y, Satoh T (2009) Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism Biochemical and biophysical. Res Commun 382:549–554. doi:10.1016/j.bbrc.2009.03.059

    CAS  Google Scholar 

  • Tsai CW, Liu KL, Lin YR, Kuo WC (2014) The mechanisms of carnosic acid attenuates tumor necrosis factor-alpha-mediated inflammation and insulin resistance in 3T3-L1 adipocytes. Mol Nutr Food Res 58:654–664. doi:10.1002/mnfr.201300356

    Article  CAS  PubMed  Google Scholar 

  • Tu Z, Moss-Pierce T, Ford P, Jiang TA (2013) Rosemary (Rosmarinus officinalis L.) extract regulates glucose and lipid metabolism by activating AMPK and PPAR pathways in HepG2 cells. J Agric Food Chem 61:2803–2810. doi:10.1021/jf400298c

    Article  CAS  PubMed  Google Scholar 

  • Ullevig SL, Zhao Q, Zamora D, Asmis R (2011) Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis 219:409–416. doi:10.1016/j.atherosclerosis.2011.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umasankar K, Nambikkairaj B, Manley Backyavathy D (2012) Effect of topical treatment of Rosmarinus officinalis essential oil on wound healing in streptozotocin induced diabetic rats. Nat Environ Pollut Technol 11:607–611

    Google Scholar 

  • Vijayakumar M, Govindarajan R, Rao GM et al (2006) Action of Hygrophila auriculata against streptozotocin-induced oxidative stress. J Ethnopharmacol 104:356–361. doi:10.1016/j.jep.2005.09.030

    Article  CAS  PubMed  Google Scholar 

  • Voshol PJ, Haemmerle G, Ouwens DM et al (2003) Increased hepatic insulin sensitivity together with decreased hepatic triglyceride stores in hormone-sensitive lipase-deficient mice. Endocrinology 144:3456–3462. doi:10.1210/en.2002-0036

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Takikawa Y, Satoh T et al (2011) Carnosic acid prevents obesity and hepatic steatosis in ob/ob mice. Hepatol Res 41:87–92. doi:10.1111/j.1872-034X.2010.00747.x

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Takikawa Y, Tabuchi T, Satoh T, Kosaka K, Suzuki K (2012a) Carnosic acid (CA) prevents lipid accumulation in hepatocytes through the EGFR/MAPK pathway. J Gastroenterol 47:805–813. doi:10.1007/s00535-012-0546-7

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Li N, Luo M, Zu Y, Efferth T (2012b) Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 17:2704–2713. doi:10.3390/molecules17032704

    Article  CAS  PubMed  Google Scholar 

  • Wu YN, Huang J, Zuo AL, Yao L (2011) Research on the effects of rosemary (Rosmarinus officinalis L.) on the blood lipids and anti-lipid peroxidation in rats. J Essential Oil Res 23:26–34. doi:10.1080/10412905.2011.9700465

    Article  Google Scholar 

  • Xie L, Ortega MT, Mora S, Chapes SK (2010) Interactive changes between macrophages and adipocytes. Clin Vaccine Immunol 17:651–659. doi:10.1128/CVI.00494-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yam D, Friedman J, Bott-Kanner G, Genin I, Shinitzky M, Klainman E (2002) Omega-3 fatty acids reduce hyperlipidaemia, hyperinsulinaemia and hypertension in cardiovascular patients. J Clin Basic Cardiol 5:229–231

    CAS  Google Scholar 

  • Yu YM, Lin HC, Chang WC (2008) Carnosic acid prevents the migration of human aortic smooth muscle cells by inhibiting the activation and expression of matrix metalloproteinase-9. Br J Nutr 100:731–738. doi:10.1017/s0007114508923710

    Article  CAS  PubMed  Google Scholar 

  • Yun YS, Noda S, Shigemori G et al (2013) Phenolic diterpenes from rosemary suppress cAMP responsiveness of gluconeogenic gene promoters. Phytother Res 27:906–910. doi:10.1002/ptr.4794

    Article  CAS  PubMed  Google Scholar 

  • Zeng HH, Tu PF, Zhou K, Wang H, Wang BH, Lu JF (2001) Antioxidant properties of phenolic diterpenes from Rosmarinus officinalis. Acta Pharmacol Sin 22:1094–1098

    CAS  PubMed  Google Scholar 

  • Zhao Y, Sedighi R, Wang P, Chen H, Zhu Y, Sang S (2015) Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem 63:4843–4852. doi:10.1021/acs.jafc.5b01246

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, F.V., Shirani, K. & Hosseinzadeh, H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn-Schmiedeberg's Arch Pharmacol 389, 931–949 (2016). https://doi.org/10.1007/s00210-016-1256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1256-0

Keywords

Navigation