Skip to main content

Advertisement

Log in

Preclinical models of muscle spasticity: valuable tools in the development of novel treatment for neurological diseases and conditions

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Poor validity of preclinical animal models is one of the most commonly discussed explanations for the failures to develop novel drugs in general and in neuroscience in particular. However, there are several areas of neuroscience such as injury-induced spasticity where etiological factor can be adequately recreated and models can focus on specific pathophysiological mechanisms that likely contribute to spasticity syndrome in humans (such as motoneuron hyperexcitability and spinal hyperreflexia). Methods used to study spasticity in preclinical models are expected to have a high translational value (e.g., electromyogram (EMG)-based electrophysiological tools) and can efficiently assist clinical development programs. However, validation of these models is not complete yet. First, true predictive validity of these models is not established as clinically efficacious drugs have been used to reverse validate preclinical models while newly discovered mechanisms effective in preclinical models are yet to be fully explored in humans (e.g., 5-HT2C receptor inverse agonists, fatty acid amid hydrolase inhibitors). Second, further efforts need to be invested into cross-laboratory validation of study protocols and tools, adherence to the highest quality standards (blinding, randomization, pre-specified study endpoints, etc.), and systematic efforts to replicate key sets of data. These appear to be readily achievable tasks that will enable development not only of symptomatic but also of disease-modifying therapy of spasticity, an area that seems to be currently not in focus of research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baastrup C, Maersk-Moller CC, Nyengaard JR, Jensen TS, Finnerup NB (2010) Spinal-, brainstem- and cerebrally mediated responses at- and below-level of a spinal cord contusion in rats: evaluation of pain-like behavior. Pain 151:670–679

    Article  PubMed  Google Scholar 

  • Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Huffman JW, Layward L (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404:84–87

    Article  CAS  PubMed  Google Scholar 

  • Bandaru SP, Liu S, Waxman SG, Tan AM (2015) Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. J Neurophysiol 113:1598–1615

    Article  PubMed  PubMed Central  Google Scholar 

  • Belozertseva IV, Dravolina OA, Tur MA, Kuvarzin SR, Zvartau EE (2015) Morphine-induced Straub tail reaction as a model of spasticity in mice: effects of serotonergic compounds. Zh Nevrol Psikhiatr Im S S Korsakova 115:73–79

    PubMed  Google Scholar 

  • Bennett DJ, Gorassini M, Fouad K, Sanelli L, Han Y, Cheng J (1999) Spasticity in rats with sacral spinal cord injury. J Neurotrauma 16:69–84

    Article  CAS  PubMed  Google Scholar 

  • Bennett DJ, Sanelli L, Cooke CL, Harvey PJ, Gorassini MA (2004) Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. J Neurophysiol 91:2247–2258

    Article  CAS  PubMed  Google Scholar 

  • Boorman GI, Lee RG, Becker WJ, Windhorst UR (1996) Impaired “natural reciprocal inhibition” in patients with spasticity due to incomplete spinal cord injury. Electroencephalogr Clin Neurophysiol 101:84–92

    Article  CAS  PubMed  Google Scholar 

  • Bos R, Sadlaoud K, Boulenguez P, Buttigieg D, Liabeuf S, Brocard C,, Haase G, Bras H, Vinay L (2013) Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci U S A 110: 348–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose PK, Hou J, Parmer R, Reier PJ, Thompson FJ (2012) Altered patterns of reflex excitability, balance, and locomotion following spinal cord injury and locomotor training. Front Physiol 3:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Bose P, Hou J, Nelson R, Nissim N, Parmer R, Keener J, Wacnik PW, Thompson FJ (2013) Effects of acute intrathecal baclofen in an animal model of TBI-induced spasticity, cognitive, and balance disabilities. J Neurotrauma 30:1177–1191

    Article  PubMed  Google Scholar 

  • Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A, Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L (2010) Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 16:302–307

    Article  CAS  PubMed  Google Scholar 

  • Cameron M, Bethoux F, Davis N, Frederick M (2014) Botulinum toxin for symptomatic therapy in multiple sclerosis. Curr Neurol Neurosci Rep 14:1–7

    Article  CAS  Google Scholar 

  • Chang E, Ghosh N, Yanni D, Lee S, Alexandru D, Mozaffar T (2013) A review of spasticity treatments: pharmacological and interventional approaches. Crit Rev Phys Rehabil Med 25(1):1–22

    Google Scholar 

  • Cote MP, Gandhi S, Zambrotta M, Houle JD (2014) Exercise modulates chloride homeostasis after spinal cord injury. J Neurosci 34:8976–8987

    Article  CAS  PubMed  Google Scholar 

  • Craner MJ, Damarjian TG, Liu S, Hains BC, Lo AC, Black JA, Newcombe J, Cuzner ML, Waxman SG (2005) Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 49:220–229

    Article  PubMed  Google Scholar 

  • de Lago E, Fernandez-Ruiz J, Ortega-Gutierrez S, Cabranes A, Pryce G, Baker D, Lopez-Rodri¡guez M, Ramos JA (2006) UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington's disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. Eur Neuropsychopharmacol 16: 7–18.

  • Dietz V (2008) Studies on the spastic rat: an adequate model for human spastic movement disorder? J Neurophysiol 99:1039–1040

    Article  CAS  PubMed  Google Scholar 

  • Eide PK, Stubhaug A, Stenehjem AE (1995) Central dysesthesia pain after traumatic spinal cord injury is dependent on N-methyl-D-aspartate receptor activation. Neurosurgery 37:1080–1087

    Article  CAS  PubMed  Google Scholar 

  • Elbasiouny SM, Moroz D, Bakr MM, Mushahwar VK (2007) Management of spasticity after spinal cord injury: current techniques and future directions. Neurorehabil Neural Repair 24:23–33

    Article  Google Scholar 

  • Farkas S, Berzsenyi P, Kárpáti E, Kocsis P, Tarnawa I (2005) Simple pharmacological test battery to assess efficacy and side effect profile of centrally acting muscle relaxant drugs. J Pharmacol Toxicol Methods 52:264–273

    Article  CAS  PubMed  Google Scholar 

  • Fouad K, Bennett DJ, Vavrek R, Blesch A (2013) Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection. Front Neurol 4:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Freidel M, Tiel-Wilck K, Schreiber H, Prechtl A, Essner U, Lang M (2015) Drug-resistant MS spasticity treatment with Sativex—add-on and driving ability. Acta Neurol Scand 131:9–16

    Article  CAS  PubMed  Google Scholar 

  • Fuchigami T, Kakinohana O, Hefferan MP, Lukacova N, Marsala S, Platoshyn O, Sugahara K, Yaksh TL, Marsala M (2011) Potent suppression of stretch reflex activity after systemic or spinal delivery of tizanidine in rats with spinal ischemia-induced chronic spastic paraplegia. Neuroscience 194:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furr-Stimming E, Boyle AM, Schiess MC (2014) Spasticity and intrathecal baclofen. Semin Neurol 34:591–596

    Article  PubMed  Google Scholar 

  • Gackiere F, Vinay L (2014) Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord. Front Neural Circuits 8:102

    PubMed  PubMed Central  Google Scholar 

  • Gagnon M, Bergeron MJ, Lavertu G, Castonguay A, Tripathy S, Bonin RP, Perez-Sanchez J, Boudreau D, Wang B, Dumas L, Valade I, Bachand K, Jacob-Wagner M, Tardif C, Kianicka I, Isenring P, Attardo G, Coull JA, De Koninck Y (2013) Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat Med 19:1524–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrison MK, Yates CC, Reese NB, Skinner RD, Garcia-Rill E (2011) Wind-up of stretch reflexes as a measure of spasticity in chronic spinalized rats: the effects of passive exercise and modafinil. Exp Neurol 227:104–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Gold R, Oreja-Guevara C (2013) Advances in the management of multiple sclerosis spasticity: multiple sclerosis spasticity guidelines. Expert Rev Neurother 13:55–59

    Article  PubMed  Google Scholar 

  • Gwak YS, Hulsebosch CE (2009) Remote astrocytic and microglial activation modulates neuronal hyperexcitability and below-level neuropathic pain after spinal injury in rat. Neuroscience 161:895–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahm SC, Yoon YW, Kim J (2015) High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats. Neurorehabil Neural Repair 29:370–381

    Article  PubMed  Google Scholar 

  • Hains BC, Waxman SG (2006) Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 26:4308–4317

    Article  CAS  PubMed  Google Scholar 

  • Harvey PJ, Li X, Li Y, Bennett DJ (2006) 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury. J Neurophysiol 96:1158–1170

    Article  CAS  PubMed  Google Scholar 

  • Heckmann CJ, Gorassini MA, Bennett DJ (2005) Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve 31:135–156

    Article  CAS  PubMed  Google Scholar 

  • Heetla HW, Staal MJ, Proost JH, van LT (2014) Clinical relevance of pharmacological and physiological data in intrathecal baclofen therapy. Arch Phys Med Rehabil 95: 2199–2206.

  • Hefferan MP, Fuchigami T, Marsala M (2006) Development of baclofen tolerance in a rat model of chronic spasticity and rigidity. Neurosci Lett 403:195–200

    Article  CAS  PubMed  Google Scholar 

  • Ho SM, Waite PME (2002) Effects of different anesthetics on the paired-pulse depression of the H reflex in adult rat. Exp Neurol 177:494–502

    Article  CAS  PubMed  Google Scholar 

  • Hook MA, Moreno G, Woller S, Puga D, Hoy K Jr, Balden R, Grau JW (2009) Intrathecal morphine attenuates recovery of function after a spinal cord injury. J Neurotrauma 26:741–752

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou J, Nelson R, Nissim N, Parmer R, Thompson FJ, Bose P (2014) Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J Neurotrauma 31:1088–1106

    Article  PubMed  Google Scholar 

  • Hsieh TH, Tsai JY, Wu YN, Hwang IS, Chen TI, Chen JJ (2010) Time course quantification of spastic hypertonia following spinal hemisection in rats. Neuroscience 167:185–198

    Article  CAS  PubMed  Google Scholar 

  • Hilliard A, Stott C, Wright S, Guy G, Pryce G, Al-Izki S, Bolton C, Giovannoni G (2012) Evaluation of the effects of Sativex (THC BDS: CBD BDS) on inhibition of spasticity in a chronic relapsing experimental allergic autoimmune encephalomyelitis: a model of multiple sclerosis. ISRN Neurology 2012:802649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakinohana M, Fuchigami T, Nakamura S, Sasara T, Kawabata T, Sugahara K (2003) Intrathecal administration of morphine, but not small dose, induced spastic paraparesis after a noninjurious interval of aortic occlusion in rats. Anesth Analg 96:769–775

    CAS  PubMed  Google Scholar 

  • Kamen L, Henney HR, Runyan JD (2008) A practical overview of tizanidine use for spasticity secondary to multiple sclerosis, stroke, and spinal cord injury. Curr Med Res Opin 24:425–439

    Article  CAS  PubMed  Google Scholar 

  • Katz R (1999) Presynaptic inhibition in humans: a comparison between normal and spastic patients. J Physiol Paris 93:379–385

    Article  CAS  PubMed  Google Scholar 

  • Kitzman PH (2006) Changes in vesicular glutamate transporter 2, vesicular GABA transporter and vesicular acetylcholine transporter labeling of sacrocaudal motoneurons in the spastic rat. Exp Neurol 197:407–419

    Article  CAS  PubMed  Google Scholar 

  • Kitzman PH, Uhl TL, Dwyer MK (2007) Gabapentin suppresses spasticity in the spinal cord-injured rat. Neuroscience 149:813–821

    Article  CAS  PubMed  Google Scholar 

  • Kitzman PH (2009) Effectiveness of riluzole in suppressing spasticity in the spinal cord injured rat. Neurosci Lett 455:150–153

    Article  CAS  PubMed  Google Scholar 

  • Koehler J, Amato MP, Oreja-Guevara C, Lycke J (2013) Clinical case reviews in multiple sclerosis spasticity: experiences from around Europe. Expert Rev Neurotherapeutics 13:61–66

    Article  Google Scholar 

  • Kong XY, Wienecke J, Hultborn H, Zhang M (2010) Robust upregulation of serotonin 2A receptors after chronic spinal transection of rats: an immunohistochemical study. Brain Res 1320:60–68

    Article  CAS  PubMed  Google Scholar 

  • Krach LE (2001) Pharmacotherapy of spasticity: oral medications and intrathecal baclofen. J Child Neurol 16:31–36

    Article  CAS  PubMed  Google Scholar 

  • Kwon BK, Okon EB, Tsai E, Beattie MS, Bresnahan JC, Magnuson DK, Reier PJ, McTigue DM, Popovich PG, Blight AR, Oudega M, Guest JD, Weaver LC, Fehlings MG, Tetzlaff W (2011) A grading system to evaluate objectively the strength of pre-clinical data of acute neuroprotective therapies for clinical translation in spinal cord injury. J Neurotrauma 28:1525–1543

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JK, Emch GS, Johnson CS, Wrathall JR (2005) Effect of spinal cord injury severity on alterations of the H-reflex. Exp Neurol 196:430–440

    Article  PubMed  Google Scholar 

  • Li Y, Gorassini MA, Bennett DJ (2004) Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats. J Neurophysiol 91:767–783

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li L, Stephens MJ, Zenner D, Murray KC, Winship IR, Vavrek R, Baker GB, Fouad K, Bennett DJ (2014) Synthesis, transport, and metabolism of serotonin formed from exogenously applied 5-HTP after spinal cord injury in rats. J Neurophysiol 111:145–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ligresti A, Cascio MG, Pryce G, Kulasegram S, Beletskaya I, De Petrocellis L, Saha B, Mahadevan A, Visintin C, Wiley JL, Baker D, Martin BR, Razdan RK, Di Marzo V (2006) New potent and selective inhibitors of anandamide reuptake with antispastic activity in a mouse model of multiple sclerosis. Br J Pharmacol 147:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P, Blesch A, Graham L, Wang Y, Samara R, Banos K, Haringer V, Havton L, Weishaupt N, Bennett D, Fouad K, Tuszynski MH (2012) Motor axonal regeneration after partial and complete spinal cord transection. J Neurosci 32:8208–8218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsala M, Hefferan MP, Kakinohana O, Nakamura S, Marsala J, Tomori Z (2005) Measurement of peripheral muscle resistance in rats with chronic ischemia-induced paraplegia or morphine-induced rigidity using a semi-automated computer-controlled muscle resistance meter. J Neurotrauma 22:1348–1361

    Article  PubMed  Google Scholar 

  • Mazzocchio R, Rossi A (1997) Involvement of spinal recurrent inhibition in spasticity. Further insight into the regulation of Renshaw cell activity. Brain 120:991–1003

    Article  PubMed  Google Scholar 

  • Murray KC, Nakae A, Stephens MJ, Rank M, D'Amico J, Harvey PJ, Li X, Harris RL, Ballou EW, Anelli R, Heckman CJ, Mashimo T, Vavrek R, Sanelli L, Gorassini MA, Bennett DJ, Fouad K (2010) Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat Med 16:694–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarrete-Opazo A, Gonzalez W, Nahuelhual P (2015) Effectiveness of oral baclofen for spasticity in children with cerebral palsy. Arch Phys Med Rehabil. doi:10.1016/j.apmr.2015.08.417

    PubMed  Google Scholar 

  • Nielsen JB, Crone C, Hultborn H (2007) The spinal pathophysiology of spasticity—from a basic science point of view. Acta Physiol (Oxf) 189:171–180

    Article  CAS  Google Scholar 

  • Nomura S, Kagawa Y, Kida H, Maruta Y, Imoto H, Fujii M, Suzuki M (2012) Effects of intrathecal baclofen therapy on motor and cognitive functions in a rat model of cerebral palsy. J Neurosurg Pediatr 9:209–215

    Article  PubMed  Google Scholar 

  • Noreau L, Proulx P, Gagnon L, Drolet M, MT L (2000) Secondary impairments after spinal cord injury: a population-based study. Am J Phys Med Rehabil 79:526–535

    Article  CAS  PubMed  Google Scholar 

  • Pong SF, Sweetman JM, Pong AS, Carpenter JF (1987) Evaluation of oral skeletal muscle relaxants in the morphine-induced Straub tail test in mice. Drug Dev Res 11:53–57

    Article  CAS  Google Scholar 

  • Rabchevsky AG, Patel SP, Duale H, Lyttle TS, O'Dell CR, Kitzman PH (2011) Gabapentin for spasticity and autonomic dysreflexia after severe spinal cord injury. Spinal Cord 49:99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pryce G, Cabranes A, Fernández-Ruiz J, Bisogno T, Di Marzo V, JZ L, BF C, Giovannoni G, Baker D (2013) Control of experimental spasticity by targeting the degradation of endocannabinoids using selective fatty acid amide hydrolase inhibitors. Multiple Sclerosis Journal 19:1896–1904

    Article  CAS  PubMed  Google Scholar 

  • Ren LQ, Wienecke J, Chen M, Møller M, Hultborn H, Zhang M (2013) The time course of serotonin 2C receptor expression after spinal transection of rats: an immunohistochemical study. Neuroscience 236:31–46

    Article  CAS  PubMed  Google Scholar 

  • Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+-Cl- cotransporter KCC2 and impairs neuronal Cl-extrusion. J Cell Biol 159:747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipilä S, Payne JA, Minichiello L, Saarma M, Kaila K (2004) Mechanism of activity-dependent down regulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24:4683–4691

    Article  CAS  PubMed  Google Scholar 

  • Rizzo MA, Hadjimichael OC, Preiningerova J, Vollmer TL (2004) Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult Scler 10:589–595

    Article  CAS  PubMed  Google Scholar 

  • Scholz J, Wolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Schouenborg J, Holmberg H, Weng HR (1992) Functional organization of the nociceptive withdrawal reflexes. II. Changes of excitability and receptive fields after spinalization in the rat. Exp Brain Res 90:469–478

    Article  CAS  PubMed  Google Scholar 

  • Siddall P, Xu CL, Cousins M (1995) Allodynia following traumatic spinal cord injury in the rat. Neuroreport 6:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Skalnikova H, Navarro R, Marsala S, Hrabakova R, Vodicka P, Gadher SJ, Kovarova H, Marsala M (2013) Signaling proteins in spinal parenchyma and dorsal root ganglion in rat with spinal injury-induced spasticity. J Proteome 91:41–57

    Article  Google Scholar 

  • Stevenson VL (2014) Intrathecal baclofen in multiple sclerosis. Eur Neurol 72(Suppl 1):32–34

    Article  PubMed  Google Scholar 

  • Steward O, Popovich PG, Dietrich WD, Kleitman N (2012) Replication and reproducibility in spinal cord injury research. Exp Neurol 233:597–605

    Article  PubMed  Google Scholar 

  • Tan AM, Chakrabarty S, Kimura H, Martin JH (2012) Selective corticospinal tract injury in the rat induces primary afferent fiber sprouting in the spinal cord and hyperreflexia. J Neurosci 32:12896–12908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro S, Shinozaki M, Mukaino M, Renault-Mihara F, Toyama Y, Liu M, Nakamura M, Okano H (2015) BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2. Neurorehabil Neural Repair 29:677–689

    Article  PubMed  Google Scholar 

  • van Gorp S, Leerink M, Kakinohana O, Platoshyn O, Santucci C, Galik J, Joosten EA, Hruska-Plochan M, Goldberg D, Marsala S, Johe K, Ciacci JD, Marsala M (2013) Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res Ther 4:57

    Article  PubMed  PubMed Central  Google Scholar 

  • van Gorp S, Deumens R, Leerink M, Nguyen S, Joosten EA, Marsala M (2014) Translation of the rat thoracic contusion model; part 1-supraspinally versus spinally mediated pain-like responses and spasticity. Spinal Cord 52:524–528

    Article  PubMed  Google Scholar 

  • Vesterinen HM, Sena ES, ffrench-Constant C, Williams A, Chandran S, Macleod MR (2010) Improving the translational hit of experimental treatments in multiple sclerosis. Mult Scler 16:1044–1055

    Article  PubMed  Google Scholar 

  • Watanabe F, Arnold WD, Hammer RE, Ghodsizadeh O, Moti H, Schumer M, Hashmi A, Hernandez A, Sneh A, Sahenk Z, Kisanuki YY (2013) Pathogenesis of autosomal dominant hereditary spastic paraplegia (SPG6) revealed by a rat model. J Neuropathol Exp Neurol 72:1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wienecke J, Westerdahl AC, Hultborn H, Kiehn O, Ryge J (2010) Global gene expression analysis of rodent motor neurons following spinal cord injury associates molecular mechanisms with development of postinjury spasticity. J Neurophysiol 103:761–778

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant from the Russian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Bespalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalov, A., Mus, L. & Zvartau, E. Preclinical models of muscle spasticity: valuable tools in the development of novel treatment for neurological diseases and conditions. Naunyn-Schmiedeberg's Arch Pharmacol 389, 457–466 (2016). https://doi.org/10.1007/s00210-016-1215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1215-9

Keywords

Navigation