Skip to main content

Advertisement

Log in

The expression of β3-adrenoceptor and muscarinic type 3 receptor immuno-reactivity in the major pelvic ganglion of the rat

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Bladder afferent outflow, linked to sensation, plays a critical role in bladder pathology: abnormal outflow results in altered sensation, leading to increased voiding frequency, urge and often incontinence. β3-adrenoceptor agonists have been suggested to be beneficial in treating these symptoms. However, the absence of a significant sympathetic innervation of the detrusor and only a modest relaxation of bladder muscle by β3 agonists has questioned the therapeutic site of action of β3 agonists in the bladder. The present study was done to explore the possibility that β3-adrenoceptors might be located in the pelvic plexus. Using the rat, where the pelvic plexus is located primarily within a single ganglion, the major pelvic ganglion (MPG), immuno-histochemical approaches were used to identify structures expressing β3-adrenoceptor immuno-reactivity (β3AR-IR). The only structures found to express β3AR-IR were small-diameter tyrosine hydroxylase and vesicular mono-amine transporter immuno-reactive (TH-IR and vmat-IR) neurones. These neurones, found in clusters or singly on the periphery of the ganglion, or dispersed in smaller clumps throughout the MPG, are similar to the small intensely fluorescent (SIF) cells described previously. Not all small cells expressed β3AR-IR. A population of the small cells were also immuno-reactive to the type 3 muscarinic receptor (M3R-IR) and the P2X3 purinergic receptor (P2X3-IR). Clumps of small cells were associated with calcitonin gene-related peptide immuno-reactive (CGRP-IR) nerve fibres (putative sensory fibres) and a small number were contacted by putative cholinergic nerves expressing immuno-reactivity to vesicular acetylcholine transporter (vacht-IR). These observations are consistent with the idea that small cells are interneurons and one of the components making up complex neural circuits within the MPG. The precise physiological role of these neural elements in the MPG is unknown. However, as one therapeutic action of β3-adrenoceptor agonists is to modulate sensation, it is possible that these neural circuits may be involved in the regulation of afferent outflow and sensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cernecka H, Pradidarcheep W, Lamers WH, Schmidt M, Michel MC (2014) Rat beta(3)-adrenoceptor protein expression: antibody validation and distribution in rat gastrointestinal and urogenital tissues. Naunyn Schmiedebergs Arch Pharmacol 387(11):1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Chapple C (2014) Mirabegron the first beta3 -adrenoceptor agonist for overactive bladder (OAB): a summary of the phase III studies. BJU Int 113(6):847–848

    Article  CAS  PubMed  Google Scholar 

  • Chapple CR, Nitti VW, Khullar V, Wyndaele JJ, Herschorn S, van Kerrebroeck P et al. (2014) Onset of action of the beta3-adrenoceptor agonist, mirabegron, in Phase II and III clinical trials in patients with overactive bladder. World J Urol 32:1565–1572

  • Crowcroft PJ, Holman ME, Szurszewski JH (1971) Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig. J Physiol 219(2):443–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dail WG Jr, Evan AP Jr, Eason HR (1975) The major ganglion in the pelvic plexus of the male rat—a histochemical and ultrastructural study. Cell Tissue Res 159(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • De Groat W, Booth AM (1993) Synaptic transmission in pelvic ganglia. In: Nervous control of the urogenital system. CA Maggi editor: Harwood academic publishers

  • de Groat WC, Booth AM (1980) Inhibition and facilitation in parasympathetic ganglia of the urinary bladder. Fed Proc 39(12):2990–2996

    PubMed  Google Scholar 

  • Dixon JS, Gilpin SA, Gilpin CJ, Gosling JA (1983) Intramural ganglia of the human urinary bladder. Br J Urol 55(2):195–198

    Article  CAS  PubMed  Google Scholar 

  • Dixon JS, Gosling JA, Canning DA, Gearhart JP (1992) An immunohistochemical study of human postnatal paraganglia associated with the urinary-bladder. J Anat 181:431–436

    PubMed Central  PubMed  Google Scholar 

  • Eastham JE, Gillespie JI (2013) The concept of peripheral modulation of bladder sensation. Organogenesis 9(3):177–186

    Article  Google Scholar 

  • el-Badawi A, Shenk EA (1968) A new theory of the innervation of bladder musculature. 1. Morphology of the intrinsic vesical innervation apparatus. J Urol 99(5):585–587

    CAS  PubMed  Google Scholar 

  • El-Badawi A, Schenk EA (1968) The peripheral adrenergic innervation apparatus - I. Intraganglionic and extraganglionic adrenergic ganglion cells. Zeitschrift für Zellforschung und Mikroskopische Anatomie 87(2):218–225

    Article  CAS  PubMed  Google Scholar 

  • Eränkö O (1976) SIF cells, chromaffin cells, granule-containing cells, and interneurons. In: Eränkö O (ed) SIF cells structure and function of the small, intensely fluorescent sympathetic cells. Raven Press, New York, pp 1–7

    Google Scholar 

  • Eränkö O (1978) Small intensely fluorescent (SIF) cells and nervous transmission in sympathetic ganglia. Annu Rev Pharmacol Toxicol 18:417–430

    Article  PubMed  Google Scholar 

  • Fujimura T, Tamura K, Tsutsumi T, Yamamoto T, Nakamura K, Koibuchi Y et al (1999) Expression and possible functional role of the β3-adrenoceptor in human and rat detrusor muscle. J Urol 161(2):680–685

    Article  CAS  PubMed  Google Scholar 

  • Gabella G (1990) Intramural neurons in the urinary-bladder of the guinea-pig. Cell Tissue Res 261(2):231–237

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JI (2004) The autonomous bladder: a view of the origin of bladder overactivity and sensory urge. BJU Int 93(4):478–483

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JI, Markerink-Van Ittersum M, De Vente J (2006) Sensory collaterals, intramural ganglia and motor nerves in the guinea-pig bladder: evidence for intramural neural circuits. Cell Tissue Res 325(1):33–45

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JI, Rouget C, Palea S, C. G, Korstanje C (2015) Beta adrenergic modulation of spontaneous microcontractions and electrical field-stimulated contractions in isolated strips of the rat bladder from normal animals and animals with partial bladder outflow obstruction NSAP - Submitted Ref No -NSAP-D-14-00220

  • Gillespie JI, Palea S, Guilloteau V, Guerard M, Lluel P, Korstanje C (2012) Modulation of non-voiding activity by the muscarinergic antagonist tolterodine and the beta(3)-adrenoceptor agonist mirabegron in conscious rats with partial outflow obstruction. BJU Int 110(2 Pt 2):E132–E142

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JI, Rouget C, Palea S, Granato C, Birder L, Korstanje C (2015). The characteristics of intrinsic complex micro-contractile activity in isolated strips of the rat bladder NSAP - Submitted Ref No -NSAP-D-14-00219

  • Gosling JA, Dixon JS (1974) Sensory nerves in mammalian urinary-tract—evaluation using light and electron-microscopy. J Anat 117:133–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gosling JA, Dixon JS, Jen PYP (1999) The distribution of noradrenergic nerves in the human lower urinary tract. Rev Eur Urol 36(1):23–30

    Article  Google Scholar 

  • Grol S, Essers PBM, Van Koeveringe GA, Martinez-Martinez P, De Vente J, Gillespie JI (2009) M 3 muscarinic receptor expression on suburothelial interstitial cells. BJU Int 104(3):398–405

    Article  CAS  PubMed  Google Scholar 

  • Igawa Y, Yamazaki Y, Takeda H, Akahane M, Ajisawa Y, Yoneyama T et al (1998) Possible β3-adrenoceptor-mediated relaxation of the human detrusor. Acta Physiol Scand 164(1):117–118

    Article  CAS  PubMed  Google Scholar 

  • Iggo A (1955) Tension receptors in the stomach and the urinary bladder. J Physiol 128(3):593–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keast JR (1995) Visualization and immunohistochemical characterization of sympathetic and parasympathetic neurons in the male rat major pelvic ganglion. Neuroscience 66(3):655–662

    Article  CAS  PubMed  Google Scholar 

  • Keast JR, Booth AM, De Groat WC (1989) Distribution of neurons in the major pelvic ganglion of the rat which supply the bladder, colon or penis. Cell Tissue Res 256(1):105–112

    Article  CAS  PubMed  Google Scholar 

  • Krauwinkel W, van Dijk J, Schaddelee M, Eltink C, Meijer J, Strabach G et al (2012) Pharmacokinetic properties of mirabegron, a β3-adrenoceptor agonist: results from two phase I, randomized, multiple-dose studies in healthy young and elderly men and women. Clin Ther 34(10):2144–2160

    Article  CAS  PubMed  Google Scholar 

  • Langley JN, Anderson HK (1895a) The innervation of the pelvic and adjoining viscera. Part 1. The lower portion of the intestine. J Physiol(London) 18(:67–105

    Article  Google Scholar 

  • Langley JN, Anderson HK (1895b) The innervation of the pelvic and adjoining viscera. Part 2. The bladder. J Physiol(London) 19:71–84

    Article  CAS  Google Scholar 

  • Langley JN, Anderson HK (1896) The innervation of the pelvic and adjoining viscera. Part 7. Anatomical observations. J Physiol(London) 20:372–406

    Article  CAS  Google Scholar 

  • Langworthy OR (1965) Innervation of the pelvic organs of the rat. Invest Urol 2:491–511

    CAS  PubMed  Google Scholar 

  • Owman C, Alm P, Sjoberg N (1983) Pelvic autonomic ganglia: structure, transmitters, function and steroid influence. In: Elfvin LG (ed) Autonomic Ganglia. John Wiley and Sons Ltd, New York

    Google Scholar 

  • Sacco E (2014) Discovery history and clinical development of mirabegron for the treatment of overactive bladder and urinary incontinence. Expert Opin Drug Discov EPub Ahead of print

  • Sacco E, Bientinesi R (2012) Mirabegron: a review of recent data and its prospects in the management of overactive bladder. Ther Adv Urol 4(6):315–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadananda P, Drake M, Paton J, Pickering A (2013) A functional analysis of the influence of beta 3-adrenoceptors on the rat micturition cycle. J Pharmacol Exp Ther 347:506–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seguchi H, Nishimura J, Zhou Y, Niiro N, Kumazawa J, Kanaide H (1998) Expression of β3-adrenoceptors in rat detrusor smooth muscle. J Urol 159(6):2197–2201

    Article  CAS  PubMed  Google Scholar 

  • Sherrington CS (1892) Notes on the arrangement of motor fibers in the lumbo-sacral plexus. J Physiol 13:621–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smet PJ, Edyvane KA, Jonavicius J, Marshall VR (1996) Neuropeptides and neurotransmitter-synthesizing enzymes in intrinsic neurons of the human urinary bladder. J Neurocytol 25(2):112–124

    Article  CAS  PubMed  Google Scholar 

  • Starling EH (1905) Elements of human physiology, 7th edn. London, Churchill

    Google Scholar 

  • Sugaya K, de Groat WC (2007) Bladder volume-dependent excitatory and inhibitory influence of lumbosacral dorsal and ventral roots on bladder activity in rats. Biomed Res 28(4):169–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugaya K, De Groat WC (2009) Excitatory and inhibitory influence of pathways in the pelvic nerve on bladder activity in rats with bladder outlet obstruction. Lower Urinary Tract Symptoms 1(1):51–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Svalø J, Nordling J, Bouchelouche K, Andersson KE, Korstanje C, Bouchelouche P (2013) The novel β3-adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity. Eur J Pharmacol 699(1-3):101–105

    Article  PubMed  Google Scholar 

  • Szurszewski JH (1981) Physiology of mammalian prevertebral ganglia. Ann Rev Physiol 43:53–68

    Article  CAS  Google Scholar 

  • Szurszewski JH, Ermilov LG, Miller SM (2002) Prevertebral ganglia and intestinofugal afferent neurones. Gut 51(1):i6–i10

    Article  PubMed Central  PubMed  Google Scholar 

  • Takeda H, Yamazaki Y, Igawa Y, Kaidoh K, Akahane S, Miyata H et al (2002) Effects of β3-adrenoceptor stimulation on prostaglandin E2-induced bladder hyperactivity and on the cardiovascular system in conscious rats. Neurourol Urodyn 21(6):558–565

    Article  CAS  PubMed  Google Scholar 

  • Taxi J, Derer M, Domich A (1983) Morphology and histophysiology of SIF cells in the autonomic ganglia. In: Elfin L (ed) Autonomic ganglia. John Wiley and Sons Ltd, New York, pp 67–95

    Google Scholar 

  • Uvelius B, Gabella G (1995) Intramural neurones appear in the urinary bladder wall following excision of the pelvic ganglion in the rat. NeuroReport 6(16):2213–2216

    Article  CAS  PubMed  Google Scholar 

  • Vaughan CW, Satchell PM (1995) Urine storage mechanisms. Prog Neurobiol 46(2-3):215–237

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Yamamoto TY (1979) Autonomic innervation of the muscles in the wall of the bladder and proximal urethra of male rats. J Anat 128(4):873–886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson PO, Barber PC, Hamid QA, Power BF, Dhillon AP, Rode J et al (1988) The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies. Br J Exp Pathol 69(1):91–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Ling EA (1998) Colocalization of nitric oxide synthase and some neurotransmitters in the intramural ganglia of the guinea pig urinary bladder. J Comp Neurol 394(4):496–505

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical standards

This manuscript has been prepared to comply with all required ethical standards. There are no conflicts of interest to be declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Gillespie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eastham, J., Stephenson, C., Korstanje, K. et al. The expression of β3-adrenoceptor and muscarinic type 3 receptor immuno-reactivity in the major pelvic ganglion of the rat. Naunyn-Schmiedeberg's Arch Pharmacol 388, 695–708 (2015). https://doi.org/10.1007/s00210-015-1122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1122-5

Keywords

Navigation