Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 387, Issue 10, pp 969–978 | Cite as

What is the role of renin inhibition during rat septic conditions: preventive effect of aliskiren on sepsis-induced lung injury

  • Erol Akpinar
  • Zekai HaliciEmail author
  • Elif Cadirci
  • Yasin Bayir
  • Emre Karakus
  • Muhammet Calik
  • Atilla Topcu
  • Beyzagul Polat
Original Paper


Sepsis and sepsis-related acute lung injuries (ALIs) are one of the main causes of death among hospitalized patients. Renin–angiotensin–aldosterone system (RAAS) has been reported to have role in sepsis. However, there is no study on aliskiren, a renin inhibitor, on sepsis-induced ALI. We aimed to investigate the potential protective effects of aliskiren in a model of cecal ligation and puncture (CLP)-induced lung injury. The rats were separated into five groups: sham, CLP, CLP + aliskiren 50 mg/kg (per orem (p.o.)), CLP + aliskiren 100 mg/kg (p.o.), and sham + aliskiren 100 mg/kg (p.o.). CLP model was applied via ligation of cecum and two punctures. After experiment, biochemical, molecular, and pathologic examinations were performed on lung and serum samples of rats. In our study, sepsis decreased superoxide dismutase (SOD) and glutathione (GSH) and increased malondialdehyde (MDA) in lung tissues of rats while aliskiren increased the SOD and GSH and decreased MDA. Also, sepsis caused a significant increase in pro-inflammatory cytokine levels (TNF-α, IL-1β, and IL-6) while aliskiren administration decreased these cytokines. Also, aliskiren administration at high dose protected lungs in pathologic evaluation. As a result of RAAS inhibition, aliskiren caused a decrease in serum angiotensin II level and increase in serum renin level. In light of these observations, we can suggest that the therapeutic administration of aliskiren prevented oxidative stress changes and cytokine changes and also protected lung tissues during CLP-induced sepsis by changing status of RAAS.


Aliskiren Angiotensin II Cytokines Lung injury Oxidative stress Sepsis 



This work was supported by the Ataturk University Medical Research Council (grant number 2011/392).

Conflict of interest

None of the authors has a commercial interest, financial interest, and/or other relationship with manufacturers of pharmaceuticals, laboratory supplies, and/or medical devices or with commercial providers of medically related services.


  1. Adembri C, Kastamoniti E, Bertolozzi I, Vanni S, Dorigo W, Coppo M, Pratesi C, De Gaudio AR, Gensini GF, Modesti PA (2004) Pulmonary injury follows systemic inflammatory reaction in infrarenal aortic surgery. Crit Care Med 32:1170–1177PubMedCrossRefGoogle Scholar
  2. Albayrak A, Halici Z, Cadirci E, Polat B, Karakus E, Bayir Y, Unal D, Atasoy M, Dogrul A (2013a) Inflammation and peripheral 5-HT7 receptors: the role of 5-HT7 receptors in carrageenan induced inflammation in rats. Eur J Pharmacol 715:270–279PubMedCrossRefGoogle Scholar
  3. Albayrak A, Halici Z, Polat B, Karakus E, Cadirci E, Bayir Y, Kunak S, Karcioglu SS, Yigit S, Unal D, Atamanalp SS (2013b) Protective effects of lithium: a new look at an old drug with potential antioxidative and anti-inflammatory effects in an animal model of sepsis. Int Immunopharmacol 16:35–40PubMedCrossRefGoogle Scholar
  4. Ayala A, Lomas JL, Grutkoski PS, Chung CS (2003) Pathological aspects of apoptosis in severe sepsis and shock? Int J Biochem Cell Biol 35:7–15PubMedCrossRefGoogle Scholar
  5. Azizi M, Webb R, Nussberger J, Hollenberg NK (2006) Renin inhibition with aliskiren: where are we now, and where are we going? J Hypertens 24:243–256PubMedCrossRefGoogle Scholar
  6. Basile DP, Leonard EC, Beal AG, Schleuter D, Friedrich J (2012) Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity. Am J Physiol Ren Physiol 302:F1494–F1502CrossRefGoogle Scholar
  7. Bechara RI, Pelaez A, Palacio A, Joshi PC, Hart CM, Brown LA, Raynor R, Guidot DM (2005) Angiotensin II mediates glutathione depletion, transforming growth factor-beta1 expression, and epithelial barrier dysfunction in the alcoholic rat lung. Am J Physiol Lung Cell Mol Physiol 289:L363–L370PubMedCrossRefGoogle Scholar
  8. Boldt J, Papsdorf M, Kumle B, Piper S, Hempelmann G (1998) Influence of angiotensin-converting enzyme inhibitor enalapril at on endothelial-derived substances in the critically ill. Crit Care Med 26:1663–1670PubMedCrossRefGoogle Scholar
  9. Bone RC, Grodzin CJ, Balk RA (1997) Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 112:235–243PubMedCrossRefGoogle Scholar
  10. Bucher M, Ittner KP, Hobbhahn J, Taeger K, Kurtz A (2001) Downregulation of angiotensin II type 1 receptors during sepsis. Hypertension 38:177–182PubMedCrossRefGoogle Scholar
  11. Cadirci E, Altunkaynak BZ, Halici Z, Odabasoglu F, Uyanik MH, Gundogdu C, Suleyman H, Halici M, Albayrak M, Unal B (2010) Alpha-lipoic acid as a potential target for the treatment of lung injury caused by cecal ligation and puncture-induced sepsis model in rats. Shock 33:479–484PubMedGoogle Scholar
  12. Cadirci E, Halici Z, Bayir Y, Albayrak A, Karakus E, Polat B, Unal D, Atamanalp SS, Aksak S, Gundogdu C (2013) Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats. Immunobiology 218:1271–1283PubMedCrossRefGoogle Scholar
  13. Choi DE, Jeong JY, Lim BJ, Chang YK, Na KR, Shin YT, Lee KW (2011) Aliskiren ameliorates renal inflammation and fibrosis induced by unilateral ureteral obstruction in mice. J Urol 186:694–701PubMedCrossRefGoogle Scholar
  14. Coskun AK, Yigiter M, Oral A, Odabasoglu F, Halici Z, Mentes O, Cadirci E, Atalay F, Suleyman H (2011) The effects of montelukast on antioxidant enzymes and proinflammatory cytokines on the heart, liver, lungs, and kidneys in a rat model of cecal ligation and puncture-induced sepsis. Sci World J 11:1341–1356CrossRefGoogle Scholar
  15. Damas P, Ledoux D, Nys M, Vrindts Y, De Groote D, Franchimont P, Lamy M (1992) Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 215:356–362PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dielis AW, Smid M, Spronk HM, Houben AJ, Hamulyak K, Kroon AA, Ten Cate H, de Leeuw PW (2007) Changes in fibrinolytic activity after angiotensin II receptor blockade in therapy-resistant hypertensive patients. J Thromb Haemost 5:1509–1515PubMedCrossRefGoogle Scholar
  17. Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. J Am Med Assoc 307:2526–2533Google Scholar
  18. Hagiwara S, Iwasaka H, Hidaka S, Hasegawa A, Koga H, Noguchi T (2009a) Antagonist of the type-1 ANG II receptor prevents against LPS-induced septic shock in rats. Intensive Care Med 35:1471–1478PubMedCrossRefGoogle Scholar
  19. Hagiwara S, Iwasaka H, Matumoto S, Hidaka S, Noguchi T (2009b) Effects of an angiotensin-converting enzyme inhibitor on the inflammatory response in in vivo and in vitro models. Crit Care Med 37:626–633PubMedCrossRefGoogle Scholar
  20. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112–116PubMedCrossRefGoogle Scholar
  21. Laesser M, Oi Y, Ewert S, Fandriks L, Aneman A (2004) The angiotensin II receptor blocker candesartan improves survival and mesenteric perfusion in an acute porcine endotoxin model. Acta Anaesthesiol Scand 48:198–204PubMedCrossRefGoogle Scholar
  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  23. Lund DD, Brooks RM, Faraci FM, Heistad DD (2007) Role of angiotensin II in endothelial dysfunction induced by lipopolysaccharide in mice. Am J Physiol Heart Circ Physiol 293:H3726–H3731PubMedCrossRefGoogle Scholar
  24. Marques e Silva S, Carneiro FP, Ferreira VM, de Oliveira PG, de Sousa JB (2013) Effects of metoclopramide on healing of colonic anastomoses in a rat model of abdominal sepsis metoclopramide and healing of colonic anastomoses. J Investig Surg Off J Acad Surg ResGoogle Scholar
  25. Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, McAnulty RJ, Humphries SE, Hill MR, Laurent GJ (2002) Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care 166:646–650CrossRefGoogle Scholar
  26. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. New Engl J Med 348:1546–1554PubMedCrossRefGoogle Scholar
  27. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97PubMedCrossRefGoogle Scholar
  28. Miyoshi M, Nagata K, Imoto T, Goto O, Ishida A, Watanabe T (2003) ANG II is involved in the LPS-induced production of proinflammatory cytokines in dehydrated rats. Am J Physiol Regul Integr Comp Physiol 284:R1092–R1097PubMedGoogle Scholar
  29. Nangaku M, Inagi R, Miyata T, Fujita T (2007) Angiotensin-induced hypoxia in the kidney: functional and structural changes of the renal circulation. Adv Exp Med Biol 618:85–99PubMedCrossRefGoogle Scholar
  30. Nitescu N, Grimberg E, Guron G (2008) Low-dose candesartan improves renal blood flow and kidney oxygen tension in rats with endotoxin-induced acute kidney dysfunction. Shock 30:166–172PubMedGoogle Scholar
  31. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  32. Polat B, Cadirci E, Halici Z, Bayir Y, Unal D, Bilgin BC, Yuksel TN, Vancelik S (2013) The protective effect of amiodarone in lung tissue of cecal ligation and puncture-induced septic rats: a perspective from inflammatory cytokine release and oxidative stress. Naunyn Schmiedeberg's Arch Pharmacol 386:635–643CrossRefGoogle Scholar
  33. Rashikh A, Ahmad SJ, Pillai KK, Kohli K, Najmi AK (2012) Aliskiren attenuates myocardial apoptosis and oxidative stress in chronic murine model of cardiomyopathy. Biomed Pharmacother 66:138–143PubMedCrossRefGoogle Scholar
  34. Rashikh A, Pillai KK, Ahmad SJ, Akhtar M, Najmi AK (2013) Aliskiren alleviates doxorubicin-induced nephrotoxicity by inhibiting oxidative stress and podocyte injury. J Renin-Angiotensin-Aldosterone Syst 14:14–22PubMedCrossRefGoogle Scholar
  35. Ritter C, Andrades M, Frota Junior ML, Bonatto F, Pinho RA, Polydoro M, Klamt F, Pinheiro CT, Menna-Barreto SS, Moreira JC, Dal-Pizzol F (2003) Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med 29:1782–1789PubMedCrossRefGoogle Scholar
  36. Rolih CA, Ober KP (1995) The endocrine response to critical illness. Med Clin N Am 79:211–224PubMedGoogle Scholar
  37. Ruiz-Ortega M, Ruperez M, Lorenzo O, Esteban V, Blanco J, Mezzano S, Egido J (2002) Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int Suppl: S12-22Google Scholar
  38. Salgado DR, Rocco JR, Silva E, Vincent JL (2010) Modulation of the renin-angiotensin-aldosterone system in sepsis: a new therapeutic approach? Expert Opin Ther Targets 14:11–20PubMedCrossRefGoogle Scholar
  39. Salvemini D, Wang ZQ, Bourdon DM, Stern MK, Currie MG, Manning PT (1996) Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema. Eur J Pharmacol 303:217–220PubMedCrossRefGoogle Scholar
  40. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159–169PubMedCrossRefGoogle Scholar
  41. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205PubMedCrossRefGoogle Scholar
  42. Sen S, Sabirli S, Ozyigit T, Uresin Y (2013) Aliskiren: review of efficacy and safety data with focus on past and recent clinical trials. Ther Adv Chron Dis 4:232–241CrossRefGoogle Scholar
  43. Shen L, Mo H, Cai L, Kong T, Zheng W, Ye J, Qi J, Xiao Z (2009) Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappaB and mitogen-activated protein kinases. Shock 31:500–506PubMedCrossRefGoogle Scholar
  44. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500PubMedGoogle Scholar
  45. Touyz RM (2005) Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Curr Opin Nephrol Hypertens 14:125–131PubMedCrossRefGoogle Scholar
  46. Wang Z, Liu Y, Han Y, Guan W, Kou X, Fu J, Yang D, Ren H, He D, Zhou L, Zeng C (2013) Protective effects of aliskiren on ischemia-reperfusion-induced renal injury in rats. Eur J Pharmacol 718:160–166PubMedCrossRefGoogle Scholar
  47. Wilkinson IB, Franklin SS, Cockcroft JR (2004) Nitric oxide and the regulation of large artery stiffness: from physiology to pharmacology. Hypertension 44:112–116PubMedCrossRefGoogle Scholar
  48. Wood JM, Maibaum J, Rahuel J, Grutter MG, Cohen NC, Rasetti V, Ruger H, Goschke R, Stutz S, Fuhrer W, Schilling W, Rigollier P, Yamaguchi Y, Cumin F, Baum HP, Schnell CR, Herold P, Mah R, Jensen C, O’Brien E, Stanton A, Bedigian MP (2003) Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem Biophys Res Commun 308:698–705PubMedCrossRefGoogle Scholar
  49. Yao SL, Feng D, Wu QP, Li KZ, Wang LK (2008) Losartan attenuates ventilator-induced lung injury. J Surg Res 145:25–32PubMedCrossRefGoogle Scholar
  50. Yigiter M, Halici Z, Odabasoglu F, Keles ON, Atalay F, Unal B, Salman AB (2011) Growth hormone reduces tissue damage in rat ovaries subjected to torsion and detorsion: biochemical and histopathologic evaluation. Eur J Obstet Gynecol Reprod Biol 157:94–100PubMedCrossRefGoogle Scholar
  51. Zanotti S, Kumar A, Kumar A (2002) Cytokine modulation in sepsis and septic shock. Expert Opin Investig Drugs 11:1061–1075PubMedCrossRefGoogle Scholar
  52. Zhang W, Han Y, Meng G, Bai W, Xie L, Lu H, Shao Y, Wei L, Pan S, Zhou S, Chen Q, Ferro A, Ji Y (2014) Direct renin inhibition with aliskiren protects against myocardial ischemia/reperfusion injury by activating nitric oxide synthase signaling in spontaneously hypertensive rats. J Am Heart Assoc 3:e000606PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Erol Akpinar
    • 1
  • Zekai Halici
    • 1
    Email author
  • Elif Cadirci
    • 2
  • Yasin Bayir
    • 3
  • Emre Karakus
    • 4
  • Muhammet Calik
    • 5
  • Atilla Topcu
    • 1
  • Beyzagul Polat
    • 2
  1. 1.Department of PharmacologyAtaturk University Faculty of MedicineErzurumTurkey
  2. 2.Department of PharmacologyAtaturk University Faculty of PharmacyErzurumTurkey
  3. 3.Department of BiochemistryAtaturk University Faculty of PharmacyErzurumTurkey
  4. 4.Department of Pharmacology and ToxicologyAtaturk University Faculty of Veterinary MedicineErzurumTurkey
  5. 5.Department of PathologyAtaturk University Faculty of MedicineErzurumTurkey

Personalised recommendations