Skip to main content

Advertisement

Log in

Basal cGMP regulates the resting pacemaker potential frequency of cultured mouse colonic interstitial cells of Cajal

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cyclic guanosine 3′,5′-monophosphate (cGMP) inhibited the generation of pacemaker activity in interstitial cells of Cajal (ICCs) from the small intestine. However, cGMP role on pacemaker activity in colonic ICCs has not been reported yet. Thus, we investigated the role of cGMP in pacemaker activity regulation by colonic ICCs. We performed a whole-cell patch-clamp and Ca2+ imaging in cultured ICCs from mouse colon. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) increased the pacemaker potential frequency, whereas zaprinast (an inhibitor of phosphodiesterase) and cell-permeable 8-bromo-cGMP decreased the pacemaker potential frequency. KT-5823 (an inhibitor of protein kinase G [PKG]) did not affect the pacemaker potential. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide [NO] synthase) increased the pacemaker potential frequency, whereas (±)-S-nitroso-N-acetylpenicillamine (SNAP, a NO donor) decreased the pacemaker potential frequency. Glibenclamide (an ATP-sensitive K+ channel blocker) did not block the effects of cell-permeable 8-bromo-cGMP and SNAP. Recordings of spontaneous intracellular Ca2+ ([Ca2+]i) oscillations revealed that ODQ and L-NAME increased [Ca2+]i oscillations. In contrast, zaprinast, 8-bromo cGMP, and SNAP decreased the [Ca2+]i oscillations. Basal cGMP levels regulate the resting pacemaker potential frequency by the alteration on Ca2+ release via a PKG-independent pathway. Additionally, the endogenous release of NO seems to be responsible maintaining basal cGMP levels in colonic ICCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altdorfer K, Bagaméri G, Donáth T, Fehér E (2002) Nitric oxide synthase immunoreactivity of interstitial cells of Cajal in experimental colitis. Inflamm Res 51:569–571

    Article  CAS  PubMed  Google Scholar 

  • Beyder A, Farrugia G (2012) Targeting ion channels for the treatment of gastrointestinal motility disorders. Ther Adv Gastreoenterol 5:5–21

    Article  CAS  Google Scholar 

  • Bolton TB, Prestwich SA, Zholos AV, Gordienko DV (1999) Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol 61:85–115

    Article  CAS  PubMed  Google Scholar 

  • Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401

    Article  CAS  PubMed  Google Scholar 

  • De Man JG, De Winter BY, Herman AG, Pelckmans PA (2007) Study on the cyclic GMP-dependency of relaxations to endogenous and exogenous nitric oxide in the mouse gastrointestinal tract. Br J Pharmacol 150:88–96

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhaese I, Vanneste G, Sips P, Buys E, Brouckaert P, Lefebvre RA (2008) Involvement of soluble guanylate cyclase alpha(1) and alpha(2), and SK(Ca) channels in NANC relaxation of mouse distal colon. Eur J Pharmacol 589:251–259

    Article  CAS  PubMed  Google Scholar 

  • Francis SH, Busch JL, Corbin JD (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franck H, Storr M, Puschmann A, Schusdziarra V, Allescher HD (1998) Involvement of intracellular Ca2+ stores in inhibitory effects of NO donor SIN-1 and cGMP. Am J Physiol 275:G159–G168

    CAS  PubMed  Google Scholar 

  • Groneberg D, König P, Koesling D, Friebe A (2011) Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 140:1608–1617

    Article  CAS  PubMed  Google Scholar 

  • Huizinga JD, Zarate N, Farrugia G (2009) Physiology, injury, and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology 137:1548–1556

    Article  PubMed Central  PubMed  Google Scholar 

  • Keef KD, Murray DC, Sanders KM, Smith TK (1997) Basal release of nitric oxide induces an oscillatory motor pattern in canine colon. J Physiol 499:773–786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koh SD, Kim TW, Jun JY, Glasgow NJ, Ward SM, Sanders KM (2000) Regulation of pacemaker currents in interstitial cells of Cajal from murine small intestine by cyclic nucleotides. J Physiol 527:149–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwan HY, Huang Y, Yao XQ, Leung FP (2009) Role of cyclic nucleotides in the control of cytosolic Ca2+ levels in vascular endothelial cells. Clin Exp Pharmacol Physiol 36:857–866

    Article  CAS  PubMed  Google Scholar 

  • Lino S, Horiguchi K, Nojyo Y (2008) Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 152:437–448

    Article  Google Scholar 

  • Lino S, Horiguchi K, Ward SM, Sanders KM (2009) Interstitial cells of Cajal contain signaling molecules for transduction of nitrergic stimulation in guinea pig caecum. Neurogastroenterol Motil 21:542–550

    Article  Google Scholar 

  • Lundberg S, Holst M, Hellstrom PM (2006) Expression of iNOS mRNA associated with suppression of colonic contraction in rat colitis. Acta Physiol 187:489–494

    Article  CAS  Google Scholar 

  • Mancinelli R, Fabrizi A, Vargiu R, Morrone L, Bagetta G, Azzena GB (2001) Functional role of inducible nitric oxide synthase on mouse colonic motility. Neurosci Lett 311:101–104

    Article  CAS  PubMed  Google Scholar 

  • Matsuda NM, Miller SM (2010) Non-adrenergic non-cholinergic inhibition of gastrointestinal smooth muscle and its intracellular mechanism(s). Fundam Clin Pharmacol 24:261–268

    Article  CAS  PubMed  Google Scholar 

  • Ozaki H, Blondfield DP, Hori M, Publicover NG, Kato I, Sanders KM (1992) Spontaneous release of nitric oxide inhibits electrical, Ca2+ and mechanical transients in canine gastric smooth muscle. J Physiol 445:231–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park CG, Kim YD, Kim MY, Kim JS, Choi S, Yeum CH et al (2007) Inhibition of pacemaker currents by nitric oxide via activation of ATP-sensitive K+ channels in cultured interstitial cells of Cajal from the mouse small intestine. Naunyn Schmiedeberg’s Arch Pharmacol 376:175–184

    Article  CAS  Google Scholar 

  • Powell AK, Bywater RA (2001) Endogenous nitric oxide release modulates the direction and frequency of colonic migrating motor complexes in the isolated mouse colon. Neurogastroenterol Motil 13:221–228

    Article  CAS  PubMed  Google Scholar 

  • Publicover NG, Hammond EM, Sanders KM (1993) Amplification of nitric oxide signaling by interstitial cells isolated from canine colon. Proc Natl Acad Sci U S A 90:2087–2091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rumessen JJ, Thuneberg L (1996) Pacemaker cells in the gastrointestinal tract: interstitial cells of Cajal. Scand J Gastroenterol 216:82–94

    Article  CAS  Google Scholar 

  • Sanders KM (1998) G protein receptors in gastrointestinal Physiology, IV. Neural regulation of gastrointestinal smooth muscle. Am J Physiol Gastrointest Liver Physiol 257:G1–G7

    Google Scholar 

  • Sanders KM, Ordog T, Koh SD, Ward SM (2000) A novel pacemaker mechanism drives gastrointestinal rhythmicity. News Physiol Sci 15:291–298

    CAS  PubMed  Google Scholar 

  • Sanders KM, Koh SD, Ward SM (2006) Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol 68:307–343

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Lyford G, Gores G, Farrugia G (2004) Nitric oxide in gastrointestinal health and disease. Gastroenterology 126:903–913

    Article  CAS  PubMed  Google Scholar 

  • Shahi PK, Choi S, Zuo DC, Kim MY, Park CG, Kim YD, Lee J et al (2013) The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal. J Gastroenterol. doi:10.1007/s00535-013-0849-3

    PubMed Central  PubMed  Google Scholar 

  • Spencer NJ (2001) Control of migrating motor activity in the colon. Curr Opin Pharmacol 1:604–610

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T (2003) Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol 38:421–430

    Article  CAS  PubMed  Google Scholar 

  • Toda N, Herman AG (2005) Gastrointestinal function regulation by nitrergic efferent nerves. Pharmacol Rev 57:315–338

    Article  CAS  PubMed  Google Scholar 

  • Torihashi S, Fujimoto T, Trost C, Nakayama S (2002) Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem 277:19191–19197

    Article  CAS  PubMed  Google Scholar 

  • Vannucchi MG, Corsani L, Bani D, Faussone-Pellegrini MS (2002) Myenteric neurons and interstitial cells of Cajal of mouse colon express several nitric oxide synthase isoforms. Neurosci Lett 326:191–195

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Paterson C, Huizinga JD (2003) Cholinergic and nitrergic innervations of ICC-DMP and ICC-IM in the human small intestine. Neurogastroenterol Motil 15:531–543

    Article  PubMed  Google Scholar 

  • Xue C, Pollock J, Schmidt HH, Ward SM, Sanders KM (1994) Expression of nitric oxide synthase immunoreactivity by interstitial cells of the canine proximal colon. J Auton Nerv Syst 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Huizinga JD (2008) Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel. J Cell Mol Med 12:1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Zuo DC, Choi S, Shahi PK, Kim MW, Park CG, Kim YD et al (2012) Action of lipopolysaccharide on interstitial cells of Cajal from mouse small intestine. Pharmacology 90:151–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education, Science and Technology [2011–0006525].

Conflict of interest

The authors disclose no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Yeoul Jun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahi, P.K., Choi, S., Jeong, Y.J. et al. Basal cGMP regulates the resting pacemaker potential frequency of cultured mouse colonic interstitial cells of Cajal. Naunyn-Schmiedeberg's Arch Pharmacol 387, 641–648 (2014). https://doi.org/10.1007/s00210-014-0976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-0976-2

Keywords

Navigation