Skip to main content

Advertisement

Log in

Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Adenylyl cyclase (AC) isoforms differ in their tissue distribution, cellular localization, regulation, and protein interactions. Most cell types express multiple AC isoforms. We hypothesized that cAMP produced by different AC isoforms regulates unique cellular responses in human bronchial smooth muscle cells (BSMC). Overexpression of AC2, AC3, or AC6 had distinct effects on forskolin (Fsk)-induced expression of a number of known cAMP-responsive genes. These data show that different AC isoforms can differentially regulate gene expression. Most notable, overexpression and activation of AC2 enhanced interleukin 6 (IL-6) expression, but overexpression of AC3 or AC6 had no effect. IL-6 production by BSMC was induced by Fsk and select G protein-coupled receptor (GPCR) agonists, though IL-6 levels did not directly correlate with global cAMP levels. Treatment with PKA selective 6-Bnz-cAMP or Epac selective 8-CPT-2Me-cAMP cAMP analogs revealed a predominant role for PKA in cAMP-mediated induction of IL-6. IL-6 promoter mutations demonstrated that AP-1 and CRE transcription sites were required for Fsk to stimulate IL-6 expression. Our present study defines an AC2 cAMP signaling compartment that specifically regulates IL-6 expression in BSMC via Epac and PKA and demonstrates that other AC isoforms are excluded from this pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AC:

Adenylyl cyclase

cAMP:

Cyclic 3′,5′ adenosine monophosphate

BSMC:

Bronchial smooth muscle cells

Fsk:

Forskolin

IL-6:

Interleukin 6

GPCR:

G protein-coupled receptor

Epac:

Exchange protein activated by cAMP

PKA:

Protein kinase A

AP-1:

Activator protein 1

CRE:

cAMP response element

βAR:

Beta-adrenergic receptor

PKC:

Protein kinase C

CaM:

Calmodulin

Iso:

Isoproterenol

NECA:

5′-N-ethylcarboxamidoadenosine

AVP:

Arginine vasopressin

α-CGRP:

α-Calcitonin gene related peptide

PGD2:

Prostaglandin D2

IBMX:

3-Isobutyl-1-methylxanthine

CP:

Crossing point

AREG:

Amphiregulin

SCG2:

Secretogranin II

CCND1:

Cyclin D1

SST:

Somatostatin

EP2R:

Prostaglandin E2 receptor

Buta:

Butaprost

8-CPT-2Me-cAMP:

8-(4-Chlorophenylthio)-2′-O-methylad­enosine-3′,5′-cyclic monophosphate sodium salt

8-Br-cAMP:

8-Bromoadenosine 3′,5′-cyclic monophosphate

p38 MAPK:

p38 mitogen-activated protein kinase

PI3K:

Phosphatidylinositol 3-kinase

PGE2:

Prostaglandin E2

qRT-PCR:

Quantitative reverse transcriptase polymerase chain reaction

C/EBP:

CCAAT-enhancer-binding protein

RNAi:

RNA interference

PDE:

Phosphodiesterase

AKAP:

A kinase anchoring protein

References

  • Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, Nakajima T, Hirano T, Kishimoto T (1990) A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. Embo J 9(6):1897–1906

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ammit AJ, Lazaar AL, Irani C, O’Neill GM, Gordon ND, Amrani Y, Penn RB, Panettieri RA Jr (2002) Tumor Necrosis Factor-alpha -Induced Secretion of RANTES and Interleukin-6 from Human Airway Smooth Muscle Cells. Modulation by Glucocorticoids and beta -Agonists. Am J Respir Cell Mol Biol 26(4):465–474

    Article  PubMed  CAS  Google Scholar 

  • Bayewitch ML, Avidor-Reiss T, Levy R, Pfeuffer T, Nevo I, Simonds WF, Vogel Z (1998) Inhibition of adenylyl cyclase isoforms V and VI by various Gbetagamma subunits. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 12(11):1019–1025

    CAS  Google Scholar 

  • Bogard A, Xu C, Ostrom R (2011) Human Bronchial Smooth Muscle Cells Express Adenylyl Cyclase Isoforms 2, 4, and 6 in Distinct Membrane Microdomains. J Pharmacol Exp Ther 337(1):209–217. doi:10.1124/jpet.110.177923

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bogard AS, Adris P, Ostrom RS (2012) Adenylyl cyclase 2 selectively couples to E prostanoid type 2 receptors, whereas adenylyl cyclase 3 is not receptor-regulated in airway smooth muscle. J Pharmacol Exp Ther 342(2):586–595. doi:10.1124/jpet.112.193425

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bol GF, Hulster A, Pfeuffer T (1997) Adenylyl cyclase type II is stimulated by PKC via C-terminal phosphorylation. Biochim Biophys Acta 1358(3):307–313

    Article  PubMed  CAS  Google Scholar 

  • Brown KM, Lee LC, Findlay JE, Day JP, Baillie GS (2012) Cyclic AMP-specific phosphodiesterase, PDE8A1, is activated by protein kinase A-mediated phosphorylation. Febs Lett 586(11):1631–1637. doi:10.1016/j.febslet.2012.04.033

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Iyengar R (1993) Inhibition of cloned adenylyl cyclases by mutant-activated Gi-alpha and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. The Journal of biological chemistry 268(17):12253–12256

    PubMed  CAS  Google Scholar 

  • Chen C, Du J, Feng W, Song Y, Lu Z, Xu M, Li Z, Zhang Y (2012) beta-Adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKCdelta/p38 MAPK signalling in neonatal mouse cardiac fibroblasts. Br J Pharmacol 166(2):676–688. doi:10.1111/j.1476-5381.2011.01785.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choi EJ, Xia Z, Storm DR (1992) Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry 31(28):6492–6498

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Padgett W, Seamon KB (1982) Activation of cyclic AMP-generating systems in brain membranes and slices by the diterpene forskolin: augmentation of receptor-mediated responses. J Neurochem 38(2):532–544

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Jacobson KA, Ukena D (1987) Adenosine receptors: development of selective agonists and antagonists. Progress in clinical and biological research 230:41–63

    PubMed  CAS  Google Scholar 

  • Darfler FJ, Mahan LC, Koachman AM, Insel PA (1982) Stimulation of forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J Biol Chem 257(20):11901–11907

    PubMed  CAS  Google Scholar 

  • Dendorfer U, Oettgen P, Libermann TA (1994) Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP, and lipopolysaccharide. Molecular and cellular biology 14(7):4443–4454

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ding Q, Gros R, Gray ID, Taussig R, Ferguson SS, Feldman RD (2004) Raf kinase activation of adenylyl cyclases: isoform-selective regulation. Mol Pharmacol 66(4):921–928. doi:10.1124/mol.66.4

    PubMed  CAS  Google Scholar 

  • Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein bg subunits. Nature 356:159–161

    Article  PubMed  CAS  Google Scholar 

  • Feinstein PG, Schrader KA, Bakalyar HA, Tang WJ, Krupinski J, Gilman AG, Reed RR (1991) Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. Proc Natl Acad Sci U S A 88(22):10173–10177

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fiebich BL, Schleicher S, Spleiss O, Czygan M, Hull M (2001) Mechanisms of prostaglandin E2-induced interleukin-6 release in astrocytes: possible involvement of EP4-like receptors, p38 mitogen-activated protein kinase and protein kinase C. J Neurochem 79(5):950–958

    Article  PubMed  CAS  Google Scholar 

  • Gao MH, Hammond HK (2011) Unanticipated signaling events associated with cardiac adenylyl cyclase gene transfer. J Mol Cell Cardiol 50(5):751–758. doi:10.1016/j.yjmcc.2011.02.009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gao MH, Tang T, Lai NC, Miyanohara A, Guo T, Tang R, Firth AL, Yuan JX, Hammond HK (2011) Beneficial effects of adenylyl cyclase type 6 (AC6) expression persist using a catalytically inactive AC6 mutant. Mol Pharmacol 79(3):381–388. doi:10.1124/mol.110.067298

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gros R, Ding Q, Chorazyczewski J, Pickering JG, Limbird LE, Feldman RD (2006) Adenylyl cyclase isoform-selective regulation of vascular smooth muscle proliferation and cytoskeletal reorganization. Circ Res 99(8):845–852. doi:10.1161/01.RES.0000245189.21703.c0

    Article  PubMed  CAS  Google Scholar 

  • Horvat SJ, Deshpande DA, Yan H, Panettieri RA, Codina J, Dubose TD Jr, Xin W, Rich TC, Penn RB (2012) A-kinase anchoring proteins regulate compartmentalized cAMP signaling in airway smooth muscle. FASEB J 26(9):3670–3679. doi:10.1096/fj.11-201020

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Insel PA, Ostrom RS (2003) Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell Mol Neurobiol 23(3):305–314

    Article  PubMed  CAS  Google Scholar 

  • Jacobowitz O, Chen J, Premont RT, Iyengar R (1993) Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment. The Journal of biological chemistry 268(6):3829–3832

    PubMed  CAS  Google Scholar 

  • Kapiloff MS, Piggott LA, Sadana R, Li J, Heredia LA, Henson E, Efendiev R, Dessauer CW (2009) An adenylyl cyclase-mAKAPbeta signaling complex regulates cAMP levels in cardiac myocytes. J Biol Chem 284(35):23540–23546. doi:10.1074/jbc.M109.030072

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Katsushika S, Chen L, Kawabe J, Nilakantan R, Halnon NJ, Homcy CJ, Ishikawa Y (1992) Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Natl Acad Sci U S A 89(18):8774–8778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lai HL, Yang TH, Messing RO, Ching YH, Lin SC, Chern Y (1997) Protein kinase C inhibits adenylyl cyclase type VI activity during desensitization of the A2a-adenosine receptor-mediated cAMP response. J Biol Chem 272(8):4970–4977

    Article  PubMed  CAS  Google Scholar 

  • Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328(6126):175–178. doi:10.1038/328175a0

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Gregorian C, Insel PA (2000) Cellular release of and response to ATP as key determinants of the set-point of signal transduction pathways. J Biol Chem 275(16):11735–11739

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Gregorian C, Drenan RM, Xiang Y, Regan JW, Insel PA (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276(45):42063–42069

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Bogard AS, Gros R, Feldman RD (2012) Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps. Naunyn Schmiedebergs Arch Pharmacol 385(1):5–12. doi:10.1007/s00210-011-0696-9

    Article  PubMed  CAS  Google Scholar 

  • Patel TB, Du Z, Pierre S, Cartin L, Scholich K (2001) Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 269(1–2):13–25

    Article  PubMed  CAS  Google Scholar 

  • Piggott LA, Bauman AL, Scott JD, Dessauer CW (2008) The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain. Proc Natl Acad Sci U S A 105(37):13835–13840. doi:10.1073/pnas.0712100105

    Article  PubMed Central  PubMed  Google Scholar 

  • Plaisance S, Vanden Berghe W, Boone E, Fiers W, Haegeman G (1997) Recombination signal sequence binding protein Jkappa is constitutively bound to the NF-kappaB site of the interleukin-6 promoter and acts as a negative regulatory factor. Mol Cell Biol 17(7):3733–3743

    PubMed Central  PubMed  CAS  Google Scholar 

  • Raychaudhuri N, Douglas RS, Smith TJ (2010) PGE2 induces IL-6 in orbital fibroblasts through EP2 receptors and increased gene promoter activity: implications to thyroid-associated ophthalmopathy. PLoS One 5(12):e15296. doi:10.1371/journal.pone.0015296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rincon M, Irvin CG (2012) Role of IL-6 in asthma and other inflammatory pulmonary diseases. International journal of biological sciences 8(9):1281–1290. doi:10.7150/ijbs.4874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000) Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275(52):41447–41457

    Article  PubMed  CAS  Google Scholar 

  • Scott JD, Dessauer CW, Tasken K (2013) Creating order from chaos: cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol 53:187–210. doi:10.1146/annurev-pharmtox-011112-140204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shen JX, Cooper DM (2013) AKAP79 and PKC, PKA and PDE4, participate in a Gq-linked muscarinic receptor and adenylyl cyclase 2 cAMP signalling complex. Biochem J. doi:10.1042/BJ20130359

    PubMed Central  Google Scholar 

  • Sutkowski EM, Tang WJ, Broome CW, Robbins JD, Seamon KB (1994) Regulation of forskolin interactions with type I, II, V and VI adenylyl cyclases by Gs alpha. Biochemistry 33:12852–12859

    Article  PubMed  CAS  Google Scholar 

  • Tanabe O, Akira S, Kamiya T, Wong GG, Hirano T, Kishimoto T (1988) Genomic structure of the murine IL-6 gene. High degree conservation of potential regulatory sequences between mouse and human. J Immunol 141(11):3875–3881

    PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science 254(5037):1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Tliba O, Panettieri RA Jr (2009) Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol 71:509–535. doi:10.1146/annurev.physiol.010908.163227

    Article  PubMed  CAS  Google Scholar 

  • Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, Haegeman G (1998) p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 273(6):3285–3290

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Zhu F, Konstantopoulos K (2010) Prostaglandin E2 induces interleukin-6 expression in human chondrocytes via cAMP/protein kinase A- and phosphatidylinositol 3-kinase-dependent NF-kappaB activation. American journal of physiology Cell physiology 298(6):C1445–C1456. doi:10.1152/ajpcell.00508.2009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wei J, Wayman G, Storm DR (1996) Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo. J Biol Chem 271(39):24231–24235

    Article  PubMed  CAS  Google Scholar 

  • Willoughby D, Wong W, Schaack J, Scott JD, Cooper DM (2006) An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. Embo J 25(10):2051–2061. doi:10.1038/sj.emboj.7601113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yokoyama A, Kohno N, Fujino S, Hamada H, Inoue Y, Fujioka S, Ishida S, Hiwada K (1995) Circulating interleukin-6 levels in patients with bronchial asthma. Am J Respir Crit Care Med 151(5):1354–1358. doi:10.1164/ajrccm.151.5.7735584

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health National Heart, Lung and Blood Institute [Grant HL079166].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rennolds S. Ostrom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 114 kb)

ESM 2

(DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogard, A.S., Birg, A.V. & Ostrom, R.S. Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms. Naunyn-Schmiedeberg's Arch Pharmacol 387, 329–339 (2014). https://doi.org/10.1007/s00210-013-0950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0950-4

Keywords

Navigation