Skip to main content
Log in

Extracellular loop 3 of the noradrenaline transporter contributes to substrate and inhibitor selectivity

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The human noradrenaline transporter (NET) and 5-hydroxytryptamine (5-HT) transporter (SERT) are inhibited by antidepressants and psychoactive drugs such as cocaine. Both substrates and inhibitors bind in the transmembrane core of the protein, but molecular divergence at the binding site is not sufficient to account for the NET-selective and SERT-selective inhibition of the antidepressants, desipramine and citalopram, respectively. We considered that the poorly conserved third extracellular loop may contribute to these differences. We substituted single amino acid residues of the third extracellular loop in NET for equivalents from SERT, transiently transfected COS-7 cells with WT NET, 13 mutant NETs and WT SERT, and measured [3H]noradrenaline uptake, [3H]nisoxetine binding and [3H]5-HT uptake. Mutants F299W, Y300Q, R301K and K303L, at the C-terminal end of EL3, all showed significantly decreased [3H]nisoxetine binding, indicative of a reduced cell surface expression. Most mutants differed little, if at all, from WT NET regarding [3H]noradrenaline uptake; however, the I297P mutant showed no significant uptake activity despite intact cell surface expression, and the A293F mutant showed a significantly slower transporter turnover than WT NET in addition to [3H]5-HT uptake that was significantly greater than that of WT NET. The A293F mutation also decreased desipramine potency and increased the inhibition of [3H]noradrenaline uptake by citalopram compared to WT NET. These results suggest that the third extracellular loop allosterically regulates the ability of the transmembrane domains to transport substrates and bind inhibitors and thus contributes to the selectivity of substrates and antidepressants for NET and SERT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen J, Taboureau O, Hansen KB, Olsen L, Egebjerg J, Strømgaard K, Kristensen AS (2009) Location of the antidepressant binding site in the serotonin transporter: importance of Ser-438 in recognition of citalopram and tricyclic antidepressants. J Biol Chem 284:10276–10284. doi:10.1074/jbc.M806907200

    Article  CAS  PubMed  Google Scholar 

  • Andersen J, Olsen L, Hansen KB, Taboureau O, Jørgensen FS, Jørgensen AM, Bang-Andersen B, Egebjerg J, Strømgaard K, Kristensen AS (2010) Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J Biol Chem 285:2051–2063. doi:10.1074/jbc.M109.072587

    Article  CAS  PubMed  Google Scholar 

  • Andersen J, Stuhr-Hansen N, Zachariassen L, Toubro S, Hansen SM, Eildal JN, Bond AD, Bogeso KP, Bang-Andersen B, Kristensen AS, Strømgaard K (2011) Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proc Natl Acad Sci U S A 108:12137–12142. doi:10.1073/pnas.1103060108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Apparsundaram S, Galli A, DeFelice LJ, Hartzell HC, Blakely RD (1998) Acute regulation of norepinephrine transport: I. Protein kinase C-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells. J Pharmacol Exp Ther 287:733–743

    CAS  PubMed  Google Scholar 

  • Barker EL, Perlman MA, Adkins EM, Houlihan WJ, Pristupa ZB, Niznik HB, Blakely RD (1998) High affinity recognition of serotonin transporter antagonists defined by species-scanning mutagenesis. An aromatic residue in transmembrane domain I dictates species-selective recognition of citalopram and mazindol. J Biol Chem 273:19459–19468

    Article  CAS  PubMed  Google Scholar 

  • Beuming T, Shi L, Javitch JA, Weinstein H (2006) A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol Pharmacol 70:1630–1642. doi:10.1124/mol.106.026120

    Article  CAS  PubMed  Google Scholar 

  • Beuming T, Kniazeff J, Bergmann ML, Shi L, Gracia L, Raniszewska K, Newman AH, Javitch JA, Weinstein H, Gether U, Loland CJ (2008) The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat Neurosci 11:780–789. doi:10.1038/nn.2146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bönisch H, Harder R (1986) Binding of 3H-desipramine to the neuronal noradrenaline carrier of rat phaeochromocytoma cells (PC-12 cells). Naunyn Schmiedebergs Arch Pharmacol 334:403–411

    Article  PubMed  Google Scholar 

  • Celik L, Schiott B, Tajkhorshid E (2008a) Substrate binding and formation of an occluded state in the leucine transporter. Biophys J 94:1600–1612. doi:10.1529/biophysj.107.117580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Celik L, Sinning S, Severinsen K, Hansen CG, Moller MS, Bols M, Wiborg O, Schiott B (2008b) Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation. J Am Chem Soc 130:3853–3865. doi:10.1021/ja076403h

    Article  CAS  PubMed  Google Scholar 

  • Chen JG, Liu-Chen S, Rudnick G (1998) Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J Biol Chem 273:12675–12681

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K I) and the concentration of inhibitor which causes 50 per cent inhibition (I 50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Distelmaier F, Wiedemann P, Bruss M, Bonisch H (2004) Functional importance of the C-terminus of the human norepinephrine transporter. J Neurochem 91:537–546. doi:10.1111/j.1471-4159.2004.02729.x

    Article  CAS  PubMed  Google Scholar 

  • Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A (1999) Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type. J Pharmacol Exp Ther 289:877–885

    CAS  PubMed  Google Scholar 

  • Field JR, Henry LK, Blakely RD (2010) Transmembrane domain 6 of the human serotonin transporter contributes to an aqueously accessible binding pocket for serotonin and the psychostimulant 3,4-methylene dioxymethamphetamine. J Biol Chem 285:11270–11280. doi:10.1074/jbc.M109.093658

    Article  CAS  PubMed  Google Scholar 

  • Forrest LR, Zhang YW, Jacobs MT, Gesmonde J, Xie L, Honig BH, Rudnick G (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci U S A 105:10338–10343. doi:10.1073/pnas.0804659105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaffaney JD, Vaughan RA (2004) Uptake inhibitors but not substrates induce protease resistance in extracellular loop two of the dopamine transporter. Mol Pharmacol 65:692–701. doi:10.1124/mol.65.3.692

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J Biol Chem 269:7124–7130

    CAS  PubMed  Google Scholar 

  • Kanner BI, Bendahan A, Pantanowitz S, Su H (1994) The number of amino acid residues in hydrophilic loops connecting transmembrane domains of the GABA transporter GAT-1 is critical for its function. FEBS Lett 356:191–194

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469–474. doi:10.1038/nature10737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kristensen AS, Larsen MB, Johnsen LB, Wiborg O (2004) Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants. Eur J Neurosci 19:1513–1523. doi:10.1111/j.1460-9568.2004.03202.x

    Article  PubMed  Google Scholar 

  • Larsen MB, Sonders MS, Mortensen OV, Larson GA, Zahniser NR, Amara SG (2011) Dopamine transport by the serotonin transporter: a mechanistically distinct mode of substrate translocation. J Neurosci 31:6605–6615. doi:10.1523/JNEUROSCI.0576-11.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mao Y, Mathewson L, Gesmonde J, Sato Y, Holy M, Sitte HH, Rudnick G (2008) Involvement of serotonin transporter extracellular loop 1 in serotonin binding and transport. Mol Membr Biol 25:115–127. doi:10.1080/09687680701633257

    Article  CAS  PubMed  Google Scholar 

  • Masson J, Sagne C, Hamon M, El Mestikawy S (1999) Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51:439–464

    CAS  PubMed  Google Scholar 

  • Mitchell SM, Lee E, Garcia ML, Stephan MM (2004) Structure and function of extracellular loop 4 of the serotonin transporter as revealed by cysteine-scanning mutagenesis. J Biol Chem 279:24089–24099. doi:10.1074/jbc.M311173200

    Article  CAS  PubMed  Google Scholar 

  • Mortensen OV, Amara SG (2006) Gain of function mutants reveal sites important for the interaction of the atypical inhibitors benztropine and bupropion with monoamine transporters. J Neurochem 98:1531–1540. doi:10.1111/j.1471-4159.2006.04060.x

    Article  CAS  PubMed  Google Scholar 

  • Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283:1305–1322

    CAS  PubMed  Google Scholar 

  • Owens MJ, Knight DL, Nemeroff CB (2001) Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 50:345–350

    Article  CAS  PubMed  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354. doi:10.1038/350350a0

    Article  CAS  PubMed  Google Scholar 

  • Paczkowski FA, Bryan-Lluka LJ (2001) Tyrosine residue 271 of the norepinephrine transporter is an important determinant of its pharmacology. Brain Res Mol Brain Res 97:32–42

    Article  CAS  PubMed  Google Scholar 

  • Paczkowski FA, Bryan-Lluka LJ, Porzgen P, Brüss M, Bonisch H (1999) Comparison of the pharmacological properties of cloned rat, human, and bovine norepinephrine transporters. J Pharmacol Exp Ther 290:761–767

    CAS  PubMed  Google Scholar 

  • Paczkowski FA, Sharpe IA, Dutertre S, Lewis RJ (2007) chi-Conotoxin and tricyclic antidepressant interactions at the norepinephrine transporter define a new transporter model. J Biol Chem 282:17837–17844. doi:10.1074/jbc.M610813200

    Article  CAS  PubMed  Google Scholar 

  • Piscitelli CL, Gouaux E (2012) Insights into transport mechanism from LeuT engineered to transport tryptophan. EMBO J 31:228–235. doi:10.1038/emboj.2011.353

    Article  CAS  PubMed  Google Scholar 

  • Pramod AB, Foster J, Carvelli L, Henry LK (2013) SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspect Med 34:197–219. doi:10.1016/j.mam.2012.07.002

    Article  CAS  Google Scholar 

  • Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A 90:2542–2546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roubert C, Cox PJ, Brüss M, Hamon M, Bonisch H, Giros B (2001a) Determination of residues in the norepinephrine transporter that are critical for tricyclic antidepressant affinity. J Biol Chem 276:8254–8260. doi:10.1074/jbc.M009798200

    Article  CAS  PubMed  Google Scholar 

  • Roubert C, Sagne C, Kapsimali M, Vernier P, Bourrat F, Giros B (2001b) A Na(+)/Cl(−)-dependent transporter for catecholamines, identified as a norepinephrine transporter, is expressed in the brain of the teleost fish medaka (Oryzias latipes). Mol Pharmacol 60:462–473

    CAS  PubMed  Google Scholar 

  • Sarker S, Weissensteiner R, Steiner I, Sitte HH, Ecker GF, Freissmuth M, Sucic S (2010) The high-affinity binding site for tricyclic antidepressants resides in the outer vestibule of the serotonin transporter. Mol Pharmacol 78:1026–1035. doi:10.1124/mol.110.067538

    Article  CAS  PubMed  Google Scholar 

  • Shelton CI (2004) Long-term management of major depressive disorder: are differences among antidepressant treatments meaningful? J Clin Psychiatry 65(Suppl 17):29–33

    PubMed  Google Scholar 

  • Singh SK, Yamashita A, Gouaux E (2007) Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448:952–956. doi:10.1038/nature06038

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Piscitelli CL, Yamashita A, Gouaux E (2008) A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322: 1655–1660. doi:10.1126/science.1166777

    Google Scholar 

  • Sinning S, Musgaard M, Jensen M, Severinsen K, Celik L, Koldso H, Meyer T, Bols M, Jensen HH, Schiott B, Wiborg O (2010) Binding and orientation of tricyclic antidepressants within the central substrate site of the human serotonin transporter. J Biol Chem 285:8363–8374. doi:10.1074/jbc.M109.045401

    Article  CAS  PubMed  Google Scholar 

  • Smicun Y, Campbell SD, Chen MA, Gu H, Rudnick G (1999) The role of external loop regions in serotonin transport. Loop scanning mutagenesis of the serotonin transporter external domain. J Biol Chem 274:36058–36064

    Article  CAS  PubMed  Google Scholar 

  • Stephan MM, Chen MA, Penado KM, Rudnick G (1997) An extracellular loop region of the serotonin transporter may be involved in the translocation mechanism. Biochemistry 36:1322–1328. doi:10.1021/bi962150l

    Article  CAS  PubMed  Google Scholar 

  • Sucic S, Bryan-Lluka LJ (2002) The role of the conserved GXXXRXG motif in the expression and function of the human norepinephrine transporter. Brain Res Mol Brain Res 108:40–50

    Article  CAS  PubMed  Google Scholar 

  • Sucic S, Bryan-Lluka LJ (2007) Investigation of the functional roles of the MELAL and GQXXRXG motifs of the human noradrenaline transporter using cysteine mutants. Eur J Pharmacol 556:27–35. doi:10.1016/j.ejphar.2006.10.058

    Article  CAS  PubMed  Google Scholar 

  • Tejani-Butt SM, Brunswick DJ, Frazer A (1990) [3H]nisoxetine: a new radioligand for norepinephrine uptake sites in brain. Eur J Pharmacol 191:239–243

    Article  CAS  PubMed  Google Scholar 

  • Wang CI, Shaikh NH, Ramu S, Lewis RJ (2012) A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter. Mol Pharmacol 82:898–909. doi:10.1124/mol.112.080630

    Article  CAS  PubMed  Google Scholar 

  • Wenge B, Bönisch H (2013) The role of cysteines and histidins of the norepinephrine transporter. Neurochem Res 38:1303–1314. doi:10.1007/s11064-013-1022-3

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223. doi:10.1038/nature03978

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW, Rudnick G (2005) Cysteine-scanning mutagenesis of serotonin transporter intracellular loop 2 suggests an alpha-helical conformation. J Biol Chem 280:30807–30813. doi:10.1074/jbc.M504087200

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW, Rudnick G (2006) The cytoplasmic substrate permeation pathway of serotonin transporter. J Biol Chem 281:36213–36220. doi:10.1074/jbc.M605468200

    Article  CAS  PubMed  Google Scholar 

  • Zhen J, Ali S, Dutta AK, Reith ME (2012) Characterization of [(3)H]CFT binding to the norepinephrine transporter suggests that binding of CFT and nisoxetine is not mutually exclusive. J Neurosci Methods 203:19–27. doi:10.1016/j.jneumeth.2011.08.044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Z, Zhen J, Karpowich NK, Goetz RM, Law CJ, Reith ME, Wang DN (2007) LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science 317:1390–1393. doi:10.1126/science.1147614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Z, Zhen J, Karpowich NK, Law CJ, Reith ME, Wang DN (2009) Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat Struct Mol Biol 16:652–657. doi:10.1038/nsmb.1602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Australian Research Council. TSK was supported by a University of Queensland Postgraduate Research Award. The authors thank Dr Brett A. Cromer for expert advice on interpreting the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Lynagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynagh, T., Khamu, T.S. & Bryan-Lluka, L.J. Extracellular loop 3 of the noradrenaline transporter contributes to substrate and inhibitor selectivity. Naunyn-Schmiedeberg's Arch Pharmacol 387, 95–107 (2014). https://doi.org/10.1007/s00210-013-0923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0923-7

Keywords

Navigation