Skip to main content

Advertisement

Log in

Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro.

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The aim of this study was to examine the ability of H2S, released from NaHS to protect vascular endothelial function under conditions of acute oxidative stress by scavenging superoxide anions (O2 ) and suppressing vascular superoxide anion production. O2 was generated in Krebs' solution by reacting hypoxanthine with xanthine oxidase (Hx-XO) or with the O2 generator pyrogallol to model acute oxidative stress in vitro. O2 generation was measured by lucigenin-enhanced chemiluminescence. Functional responses in mouse aortic rings were assessed using a small vessel myograph. NaHS scavenged O2 in a concentration-dependent manner. Isolated aortic rings exposed to either Hx-XO or pyrogallol displayed significantly attenuated maximum vasorelaxation responses to the endothelium-dependent vasodilator acetylcholine, and significantly reduced NO bioavailability, which was completely reversed if vessels were pre-incubated with NaHS (100 μM). NADPH-stimulated aortic O2 production was significantly attenuated by the NADPH oxidase inhibitor diphenyl iodonium. Prior treatment of vessels with NaHS (100 nM–100 μM; 30 min) inhibited NADPH-stimulated aortic O2 production in a concentration-dependent manner. This effect persisted when NaHS was washed out prior to measuring NADPH-stimulated O2 production. These data show for the first time that NaHS directly scavenges O2 and suppresses vascular NADPH oxidase-derived O2 production in vitro. Furthermore, these properties protect endothelial function and NO bioavailability in an in vitro model of acute oxidative stress. These results suggest that H2S can elicit vasoprotection by both scavenging O2 and by reducing vascular NADPH oxidase-derived O2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DPI:

Diphenyl iodonium

Hx-XO:

Combination of hypoxanthine and xanthine oxidase

l-NAME:

Nω-nitro-l-arginine methyl ester hydrochloride

NADPH:

Nicotinamide adenine dinucleotide phosphate

PG:

Pyrogallol

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Al-Magableh MR, Hart JL (2011) Mechanism of vasorelaxation and role of endogenous hydrogen sulfide production in mouse aorta. Naunyn Schmiedebergs Arch Pharmacol 383:403–413

    Article  CAS  PubMed  Google Scholar 

  • Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, Kevil CG (2012) Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1alpha and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc 1:e004093

    PubMed Central  PubMed  Google Scholar 

  • Brandes RP, Weissmann N, Schroder K (2010) NADPH oxidases in cardiovascular disease. Free Radic Biol Med 49:687–706

    Article  CAS  PubMed  Google Scholar 

  • Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V, Cirino G (2010) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30:1998–2004

    Article  CAS  PubMed  Google Scholar 

  • Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Zaid A, Giannogonas P, Cantalupo A, Dhayade S, Karalis KP, Wang R, Feil R, Cirino G (2012) cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation. PLoS One 7:e53319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carballal S, Trujillo M, Cuevasanta E, Bartesaghi S, Moller MN, Folkes LK, Garcia-Bereguiain MA, Gutierrez-Merino C, Wardman P, Denicola A, Radi R, Alvarez B (2011) Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radic Biol Med 50:196–205

    Article  CAS  PubMed  Google Scholar 

  • Chataigneau T, Feletou M, Huang PL, Fishman MC, Duhault J, Vanhoutte PM (1999) Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice. Br J Pharmacol 126:219–226

    Article  CAS  PubMed  Google Scholar 

  • Chen AF, Chen DD, Daiber A, Faraci FM, Li H, Rembold CM, Laher I (2012) Free radical biology of the cardiovascular system. Clin Sci (Lond) 123:73–91

    Article  CAS  Google Scholar 

  • Cheng Y, Ndisang J, Tang G, Cao K, Wang R (2004) Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287:2316–2323

    Article  Google Scholar 

  • DeLeon ER, Stoy GF, Olson KR (2012) Passive loss of hydrogen sulfide in biological experiments. Anal Biochem 421:203–207

    Article  CAS  PubMed  Google Scholar 

  • Dombkowski RA, Russell MJ, Olson KR (2004) Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 286:R678–R685

    Article  CAS  PubMed  Google Scholar 

  • Dowell FJ, Hamilton CA, McMurray J, Reid JL (1993) Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings. J Cardiovasc Pharmacol 22:792–797

    Article  CAS  PubMed  Google Scholar 

  • Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ford A, Al-Magableh M, Gaspari TA, Hart JL (2013) Chronic NaHS treatment is vasoprotective in high fat fed ApoE-/- mice. Int J Vasc Med 2013:915983. doi:10.1155/2013/915983

  • Forstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5:338–349

    Article  PubMed  Google Scholar 

  • Fukuto JM, Carrington SJ, Tantillo DJ, Harrison JG, Ignarro LJ, Freeman BA, Chen A, Wink DA (2012) Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol 25:769–793

    Article  CAS  PubMed  Google Scholar 

  • Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295:R1479–R1485

    Article  CAS  PubMed  Google Scholar 

  • Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    Article  CAS  PubMed  Google Scholar 

  • Kida M, Sugiyama T, Yoshimoto T, Ogawa Y (2013) Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells. Eur J Pharm Sci 48:211–215

    Article  CAS  PubMed  Google Scholar 

  • Kietadisorn R, Juni RP, Moens AL (2012) Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab 302:E481–E495

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Shibuya N, Kimura Y (2012) Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal 17:45–57

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Goto Y, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    CAS  PubMed  Google Scholar 

  • Land WG (2012) Emerging role of innate immunity in organ transplantation: part I: evolution of innate immunity and oxidative allograft injury. Transplant Rev (Orlando) 26:60–72

    Article  Google Scholar 

  • Lassegue B, San Martin A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110:1364–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Hu LF, Hu G, Bian JS (2008) Hydrogen sulfide protects astrocytes against H2O2 induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 45:1705–1713

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie A, Martin W (1998) Loss of endothelium-derived nitric oxide in rabbit aorta by oxidant stress: restoration by superoxide dismutase mimetics. Br J Pharmacol 124:719–728

    Article  CAS  PubMed  Google Scholar 

  • Mian KB, Martin W (1995) Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta. Br J Pharmacol 115:993–1000

    Article  CAS  PubMed  Google Scholar 

  • Miller AA, De Silva TM, Judkins CP, Diep H, Drummond GR, Sobey CG (2010) Augmented superoxide production by Nox2-containing NADPH oxidase causes cerebral artery dysfunction during hypercholesterolemia. Stroke 41:784–789

    Article  CAS  PubMed  Google Scholar 

  • Miller AA, Drummond GR, De Silva TM, Mast AE, Hickey H, Williams JP, Broughton BR, Sobey CG (2009) NADPH oxidase activity is higher in cerebral versus systemic arteries of four animal species: role of Nox2. Am J Physiol Heart Circ Physiol 296:H220–H225

    Article  CAS  PubMed  Google Scholar 

  • Miller AA, Drummond GR, Schmidt HH, Sobey CG (2005) NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 97:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Muzaffar S, Jeremy JY, Sparatore A, Del Soldato P, Angelini GD, Shukla N (2008a) H2S-donating sildenafil (ACS6) inhibits superoxide formation and gp91phox expression in arterial endothelial cells: role of protein kinases A and G. Br J Pharmacol 155:984–994

    Article  CAS  PubMed  Google Scholar 

  • Muzaffar S, Shukla N, Bond M, Newby AC, Angelini GD, Sparatore A, Del Soldato P, Jeremy JY (2008b) Exogenous hydrogen sulfide inhibits superoxide formation, NOX-1 expression and Rac1 activity in human vascular smooth muscle cells. J Vasc Res 45:521–528

    Article  CAS  PubMed  Google Scholar 

  • Olson KR (2012) A practical look at the chemistry and biology of hydrogen sulfide. Antioxid Redox Signal 17:32–44

    Article  CAS  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Predmore BL, Julian D, Cardounel AJ (2011) Hydrogen sulfide increases nitric oxide production from endothelial cells by an akt-dependent mechanism. Front Physiol 2:104

    PubMed Central  PubMed  Google Scholar 

  • Predmore BL, Lefer DJ, Gojon G (2012) Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 17:119–140

    Article  CAS  PubMed  Google Scholar 

  • Renga B (2011) Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-beta- synthase (CBS) and cystathionine-gamma-lyase (CSE). Inflamm Allergy Drug Targets 10:85–91

    Article  CAS  PubMed  Google Scholar 

  • Rivera J, Sobey CG, Walduck AK, Drummond GR (2010) Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 15:50–63

    Article  CAS  PubMed  Google Scholar 

  • Schramm A, Matusik P, Osmenda G, Guzik TJ (2012) Targeting NADPH oxidases in vascular pharmacology. Vascul Pharmacol 56:216–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Searcy DG, Whitehead JP, Maroney MJ (1995) Interaction of Cu, Zn superoxide dismutase with hydrogen sulfide. Arch Biochem Biophys 318:251–263

    Article  CAS  PubMed  Google Scholar 

  • Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR (2008) NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 120:254–291

    Article  CAS  PubMed  Google Scholar 

  • Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714

    Article  CAS  PubMed  Google Scholar 

  • Stasko A, Brezova V, Zalibera M, Biskupic S, Ondrias K (2009) Electron transfer: a primary step in the reactions of sodium hydrosulphide, an H2S/HS(−) donor. Free Radic Res 43:581–593

    Article  CAS  PubMed  Google Scholar 

  • Streeter E, Hart J, Badoer E (2012) An investigation of the mechanisms of hydrogen sulfide-induced vasorelaxation in rat middle cerebral arteries. Naunyn Schmiedebergs Arch Pharmacol 385:991–1002

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Tang CS, Du JB, Jin HF (2011) Hydrogen sulfide and vascular relaxation. Chin Med J (Engl) 124:3816–3819

    CAS  Google Scholar 

  • Touyz RM, Briones AM, Sedeek M, Burger D, Montezano AC (2011) NOX isoforms and reactive oxygen species in vascular health. Mol Interv 11:27–35

    Article  CAS  PubMed  Google Scholar 

  • Vasquez-Vivar J, Kalyanaraman B, Martasek P (2003) The role of tetrahydrobiopterin in superoxide generation from eNOS: enzymology and physiological implications. Free Radic Res 37:121–127

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Armstong J, Chu S, Jia-Ling S, Wong B, Cheung N, Halliwell B, Moore P (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem 90:765–768

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Cheung N, Zhu Y, Chu S, Siau J, Wong B, Armstrong J, Moore P (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Comm 343:303–310

    Article  Google Scholar 

  • Yan S, Chang T, Wang H, Wu L, Wang R, Meng Q (2006) Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem Biophys Res Comm 333:11146–11152

    Google Scholar 

  • Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283:H474–H480

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Hart was a NHMRC Peter Doherty Fellow and the project was additionally funded by the William Buckland Foundation, ANZ Trustees and the Ramaciotti Foundation. Dr Miller is the recipient of a NHMRC Career Development Fellowship.

Author disclosure statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne L. Hart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Magableh, M.R., Kemp-Harper, B.K., Ng, H.H. et al. Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro.. Naunyn-Schmiedeberg's Arch Pharmacol 387, 67–74 (2014). https://doi.org/10.1007/s00210-013-0920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0920-x

Keywords

Navigation