Skip to main content
Log in

Induction of mitochondrial permeability transition (MPT) pore opening and ROS formation as a mechanism for methamphetamine-induced mitochondrial toxicity

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

During the past 10 years, the use of methamphetamine (METH) has significantly increased in Iran and around the world. The widespread use of 3,4-methylenedioxymethamphetamine as a recreational drug has been responsible for the incidence of several cases of liver failure in young people. This issue made researchers focus on METH toxicity due to the lack of effective treatment and human health risk assessment. There are several reports showing that its long-term use increases the risk for dopamine depletion, but the toxicity mechanisms of METH in liver are not well understood. Therefore, we aimed to investigate the mitochondrial toxicity mechanisms of METH on isolated mitochondria. Rat liver mitochondria were obtained by differential ultracentrifugation, and the isolated mitochondria were then incubated with different concentrations of METH (2.5–20 μM). Our results showed that this agent could induce oxidative stress via rising in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial membrane potential collapse, and mitochondrial swelling. In addition, collapse of mitochondrial membrane potential, mitochondrial swelling, and release of cytochrome c following METH treatment were well inhibited by pretreatment of mitochondria with cyclosporin A and butylated hydroxytoluene. Finally, it is suggested that METH could interact with respiratory complexes (II and III) and METH-induced liver toxicity may be the result of its disruptive effect on mitochondrial respiratory chain that is the obvious cause of ROS formation, mitochondrial membrane potential decline, and cytochrome c expulsion which start cell death signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

METH:

Methamphetamine

ROS:

Reactive oxygen species

GSH:

Reduced glutathione

DCF-DA:

2',7'-dichlorofluorescein diacetate

TBARs:

Thiobarbituric acid reactive substances

CsA:

Cyclosporin A

MDA:

Malondialdehyde

Rh123:

Rhodamine 123

BSA:

Bovine serum albumin

MPT:

Mitochondrial permeability transition

MMP:

Mitochondrial membrane potential

BHT:

Butylated hydroxytoluene

MTT:

3-(4,5-dimethylthiazol-2-yl)-12,5-diphenyltetrazolium bromide

References

  • Albertson TE, Derlel RW, Vanhoozen B (1999) Methamphetamine and the expanding complications of amphetamines. WJM 170:214–219

    CAS  PubMed  Google Scholar 

  • Baracca A, Sgarbi G, Solaini G, Lenaz G (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim Biophys Acta 1606:137–146

    Article  CAS  PubMed  Google Scholar 

  • Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34:227–233

    Article  CAS  PubMed  Google Scholar 

  • Beitia G, Cobreros A, Sainz L, Cenarruzabeitia E (2000) Ecstasy-induced toxicity in rat liver. Liver 20:8–15

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Quinton MS, Yamamoto BK (2005) Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 95:429–436

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 99:45–53

    Article  CAS  PubMed  Google Scholar 

  • Burrows KB, Gudelsky G, Yamamoto BK (2000) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. Eur J Pharmacol 398:11–18

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271

    Article  CAS  PubMed  Google Scholar 

  • Carmo H, Hengstler JG, de Boer D, Ringel M, Carvalho F, Fernandes E, Remião F, dos Reys LA, Oesch F, Bastos ML (2004) Comparative metabolism of the designer drug 4-methylthioamphetamine by hepatocytes from man, monkey, dog, rabbit, rat and mouse. Naunyn-Schmiedebergs Arch Pharmacol 369:198–205

    Article  CAS  PubMed  Google Scholar 

  • Christian K, Riener CK, Kada G, Gruber HJ (2002) Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal Bioanal Chem 373:266–276

    Article  Google Scholar 

  • Düßmann H, Rehm M, Kögel D, Prehn JHM (2003) Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. J Cell Science 116:525–536

    Google Scholar 

  • Eskandari MR, Rahmati M, Khajeamiri AR, Kobarfard F, Noubarani M, Heidari H (2013) A new approach on methamphetamine-induced hepatotoxicity: involvement of mitochondrial dysfunction. Xenobiotica In Press.

  • Fattoretti P, Vecchiet J, Felzani G, Gracciotti N, Solazzi M, Caselli U, Bertoni-Freddari C (2001) Succinic dehydrogenase activity in human muscle mitochondria during aging: a quantitative cytochemical investigation. Mech Ageing Dev 122:1841–1848

    Article  CAS  PubMed  Google Scholar 

  • Hall AP, Henry JA (2006) Acute toxic effects of ‘Ecstasy’ (MDMA) and related compounds: overview of pathophysiology and clinical management. Br J Anaesth 96:678–685

    Article  CAS  PubMed  Google Scholar 

  • Hansson MJ, MÃ¥nsson R, Morota S, Uchino H, Kallur T, Sumi T, Ishii N, Shimazu M, Keep MF, Jegorov A, Elmér E (2008) Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic Biol Med 45:284–294

    Article  CAS  PubMed  Google Scholar 

  • Hosseini M-J, Shaki F, Ghazi-Khansari M, Pourahmad J (2013) Toxicity of vanadium on isolated rat liver mitochondria: a new mechanistic approach. Metallomics 5:152–166

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Ikeda N, Kudo K, Ishida T, Terada M, Ryoji M (2006) Methamphetamine-related sudden death with a concentration which was of a ‘toxic level’. Legal Med 8:150–155

    Article  CAS  PubMed  Google Scholar 

  • Itzhak Y, Achat-Mendes C (2004) Methamphetamine and MDMA (Ecstasy) Neurotoxicity ‘of Mice and Men’. IUBMB Life 56:249–255

    Article  CAS  PubMed  Google Scholar 

  • Kamata H, Shima N, Zaitsu K, Kamata T, Miki A, Nishikawa M, Katagi M, Tsuchihashi H (2006) Metabolism of the recently encountered designer drug, methylone, in humans and rats. Xenobiotica 36:709–723

    Article  CAS  PubMed  Google Scholar 

  • Kudin AP, Debska-Vielhaber G, Kunz WS (2005) Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomed Pharmacother 59:163–8

    Article  CAS  PubMed  Google Scholar 

  • Lambowitz AM (1979) Preparation and analysis of mitochondrial ribosomes. In: Methods in Enzymology. Nucleic Acids and Protein Synthesis. Academic, New York, pp 421–433

    Google Scholar 

  • Moon KH, Upreti VV, Yu LR, Lee IJ, Ye X, Eddington ND, Veenstra TD, Song BJ (2008) Mechanism of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)-mediated mitochondrial dysfunction in rat liver. Proteomics 8:3906–3918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa Y, Suzuki T, Tayama S, Ishii H, Ogata A (2009) Cytotoxic effects of 3,4-methylenedioxyN-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes. Arch Toxicol 83:69–80

    Article  CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  • Pontes H, Duarte JA, de Pinho PG (2008) Chronic exposure to ethanol exacerbates MDMA-induced hyperthermia and exposes liver to severe MDMA-induced toxicity in CD1 mice. Toxicology 252:64–71

    Article  CAS  PubMed  Google Scholar 

  • Potula R, Hawkins BJ, Cenna JM, Fan S, Dykstra H, Ramirez SH, Morsey B, Brodie MR, Persidsky Y (2010) Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. J Immunol 185:2867–2876

    Google Scholar 

  • Pubill D, Canudas AN, Pallàs M, Camins A, Camarasa J, Escubedo E (2003) Different glial response to methamphetamine and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn-Schmiedeberg’s Arch Pharmacol 367:490–499

    Article  CAS  Google Scholar 

  • Quinton MS, Yamamoto BK (2006) Causes and Consequences of Methamphetamine and MDMA Toxicity. The AAPS J 8:337–347

    Google Scholar 

  • Schulz M, Schmoldt A (2003) Therapeutic and toxic concentration of more than 800 drugs and other xenobiotics. Pharmazie 58:447–474

    CAS  PubMed  Google Scholar 

  • Shaki F, Hosseini M-J, Ghazi-Khansari M, Pourahmad J (2012) Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim Biophys Acta 1820:1940–1950

    Article  CAS  PubMed  Google Scholar 

  • Shaki F, Hosseini M-J, Ghazi-Khansari M, Pourahmad J (2013) Depleted uranium induces disruption of energy homeostasis and oxidative stress in isolated rat brain mitochondria. Metallomics 29:736–744

    Article  Google Scholar 

  • Å lamberová R, Rokyta R (2005) Occurrence of bicuculline-, NMDA- and kainic acid-induced seizures in prenatally methamphetamine-exposed adult male rats. Naunyn-Schmiedeberg’s Arch Pharmacol 372:236–241

    Article  Google Scholar 

  • Tahara EB, Navarete FD, Kowaltowski AJ (2009) Tissue-, substrate- and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46:1283–1297

    Article  CAS  PubMed  Google Scholar 

  • Thrash B, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Dhanasekaran M (2010) Neurotoxic effects of methamphetamine. Neurochem Res 35:171–179

    Article  CAS  PubMed  Google Scholar 

  • Winek CL, Wahba WW, Winek CL Jr, Blazer TW (2001) Drug and chemical blood-level data. Forensic Sci Int 122:107–123

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto BK, Moszczynska A, Gudelsky GA (2010) Amphetamine toxicities Classical and emerging mechanisms. Ann NY AcadSci 1187:101–121

    Article  CAS  Google Scholar 

  • Zhang F, Xu Z, Gao J, Xu B, Deng Y (2008) In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ Toxicol Pharmacol 26:232–236

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K (2010) Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem 104:371–378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs. Soleimani for providing METH.

Conflicts of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir-Jamal Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashayekhi, V., Eskandari, M.R., Kobarfard, F. et al. Induction of mitochondrial permeability transition (MPT) pore opening and ROS formation as a mechanism for methamphetamine-induced mitochondrial toxicity. Naunyn-Schmiedeberg's Arch Pharmacol 387, 47–58 (2014). https://doi.org/10.1007/s00210-013-0919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0919-3

Keywords

Navigation