Skip to main content
Log in

Escitalopram block of hERG potassium channels

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Escitalopram, a selective serotonin reuptake inhibitor, is the pharmacologically active S-enantiomer of the racemic mixture of RS-citalopram and is widely used in the treatment of depression. The effects of escitalopram and citalopram on the human ether-a-go-go-related gene (hERG) channels expressed in human embryonic kidney cells were investigated using voltage-clamp and Western blot analyses. Both drugs blocked hERG currents in a concentration-dependent manner with an IC50 value of 2.6 μM for escitalopram and an IC50 value of 3.2 μM for citalopram. The blocking of hERG by escitalopram was voltage-dependent, with a steep increase across the voltage range of channel activation. However, voltage independence was observed over the full range of activation. The blocking by escitalopram was frequency dependent. A rapid application of escitalopram induced a rapid and reversible blocking of the tail current of hERG. The extent of the blocking by escitalopram during the depolarizing pulse was less than that during the repolarizing pulse, suggesting that escitalopram has a high affinity for the open state of the hERG channel, with a relatively lower affinity for the inactivated state. Both escitalopram and citalopram produced a reduction of hERG channel protein trafficking to the plasma membrane but did not affect the short-term internalization of the hERG channel. These results suggest that escitalopram blocked hERG currents at a supratherapeutic concentration and that it did so by preferentially binding to both the open and the inactivated states of the channels and by inhibiting the trafficking of hERG channel protein to the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baranchuk A, Simpson CS, Methot M, Gibson K, Strum D (2008) Corrected QT interval prolongation after an overdose of escitalopram, morphine, oxycodone, zopiclone and benzodiazepines. Can J Cardiol 24:e38–e40

    Article  PubMed  Google Scholar 

  • Brendel J, Peukert S (2003) Blockers of the Kv1.5 channel for the treatment of atrial arrhythmias. Curr Med Chem Cardiovasc Hematol Agents 1:273–287

    Article  CAS  PubMed  Google Scholar 

  • Bril A, Gout B, Bonhomme M, Landais L, Faivre JF, Linee P, Poyser RH, Ruffolo RR Jr (1996) Combined potassium and calcium channel blocking activities as a basis for antiarrhythmic efficacy with low proarrhythmic risk: experimental profile of BRL-32872. J Pharmacol Exp Ther 276:637–646

    CAS  PubMed  Google Scholar 

  • Catalano G, Catalano MC, Epstein MA, Tsambiras PE (2001) QTc interval prolongation associated with citalopram overdose: a case report and literature review. Clin Neuropharmacol 24:158–162

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Choi BH, Ahn HS, Kim MJ, Rhie DJ, Yoon SH, do Min S, Jo YH, Kim MS, Sung KW, Hahn SJ (2003) Mechanism of block by fluoxetine of 5-hydroxytryptamine3 (5-HT3)-mediated currents in NCB-20 neuroblastoma cells. Biochem Pharmacol 66:2125–2132

    Article  CAS  PubMed  Google Scholar 

  • Dennis AT, Nassal D, Deschenes I, Thomas D, Ficker E (2011) Antidepressant-induced ubiquitination and degradation of the cardiac potassium channel hERG. J Biol Chem 286:34413–34425

    Article  CAS  PubMed  Google Scholar 

  • Engebretsen KM, Harris CR, Wood JE (2003) Cardiotoxicity and late onset seizures with citalopram overdose. J Emerg Med 25:163–166

    Article  PubMed  Google Scholar 

  • Fayssoil A, Issi J, Guerbaa M, Raynaud JC, Heroguelle V (2011) Torsade de Pointes induced by citalopram and amiodarone. Ann Cardiol Angeiol (Paris) 60:165–168

    Article  CAS  Google Scholar 

  • Ganapathi SB, Kester M, Elmslie KS (2009) State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy. Am J Physiol Cell Physiol 296:C701–C710

    Article  CAS  PubMed  Google Scholar 

  • Garnock-Jones KP, McCormack PL (2010) Escitalopram: a review of its use in the management of major depressive disorder in adults. CNS Drugs 24:769–796

    Article  CAS  PubMed  Google Scholar 

  • Hyttel J (1982) Citalopram—pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog Neuropsychopharmacol Biol Psychiatry 6:277–295

    Article  CAS  PubMed  Google Scholar 

  • Kass RS, Cabo C (2000) Channel structure and drug-induced cardiac arrhythmias. Proc Natl Acad Sci U S A 97:11683–11684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller MB (2000) Citalopram therapy for depression: a review of 10 years of European experience and data from U.S. clinical trials. J Clin Psychiatry 61:896–908

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Nagatomo T, Abe H, Kawakami K, Duff HJ, Makielski JC, January CT, Nakashima Y (2005) Blockade of HERG cardiac K+ current by antifungal drug miconazole. Br J Pharmacol 144:840–848

    Article  CAS  PubMed  Google Scholar 

  • Lee HM, Hahn SJ, Choi BH (2010) Open channel block of Kv1.5 currents by citalopram. Acta Pharmacol Sin 31:429–435

    Article  CAS  PubMed  Google Scholar 

  • Melzacka M, Rurak A, Adamus A, Daniel W (1984) Distribution of citalopram in the blood serum and in the central nervous system of rats after single and multiple dosage. Pol J Pharmacol Pharm 36:675–682

    CAS  PubMed  Google Scholar 

  • Milnes JT, Crociani O, Arcangeli A, Hancox JC, Witchel HJ (2003) Blockade of HERG potassium currents by fluvoxamine: incomplete attenuation by S6 mutations at F656 or Y652. Br J Pharmacol 139:887–898

    Article  CAS  PubMed  Google Scholar 

  • Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000) A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A 97:12329–12333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pacher P, Bagi Z, Lako-Futo Z, Ungvari Z, Nanasi PP, Kecskemeti V (2000) Cardiac electrophysiological effects of citalopram in guinea pig papillary muscle comparison with clomipramine. Gen Pharmacol 34:17–23

    Article  CAS  PubMed  Google Scholar 

  • Pacher P, Kecskemeti V (2004) Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns? Curr Pharm Des 10:2463–2475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parker NG, Brown CS (2000) Citalopram in the treatment of depression. Ann Pharmacother 34:761–771

    Article  CAS  PubMed  Google Scholar 

  • Paul AA, Witchel HJ, Hancox JC (2002) Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine. Br J Pharmacol 136:717–729

    Article  CAS  PubMed  Google Scholar 

  • Perchenet L, Hilfiger L, Mizrahi J, Clement-Chomienne O (2001) Effects of anorexinogen agents on cloned voltage-gated K+ channel hKv1.5. J Pharmacol Exp Ther 298:1108–1119

    CAS  PubMed  Google Scholar 

  • Rajamani S, Eckhardt LL, Valdivia CR, Klemens CA, Gillman BM, Anderson CL, Holzem KM, Delisle BP, Anson BD, Makielski JC, January CT (2006) Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine. Br J Pharmacol 149:481–489

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C (2006) The pharmacology of citalopram enantiomers: the antagonism by R-citalopram on the effect of S-citalopram. Basic Clin Pharmacol Toxicol 99:91–95

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Gut B, Wendt-Nordahl G, Kiehn J (2002) The antidepressant drug fluoxetine is an inhibitor of human ether-a-go-go-related gene (HERG) potassium channels. J Pharmacol Exp Ther 300:543–548

    Article  CAS  PubMed  Google Scholar 

  • Tseng PT, Lee Y, Lin YE, Lin PY (2012) Low-dose escitalopram for 2 days associated with corrected QT interval prolongation in a middle-aged woman: a case report and literature review. Gen Hosp Psychiatry 34(210):e213–e215

    Google Scholar 

  • Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP (2012) hERG K+ channels: structure, function, and clinical significance. Physiol Rev 92:1393–1478

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg JI, Walker BD, Campbell TJ (2001) HERG K+ channels: friend and foe. Trends Pharmacol Sci 22:240–246

    Article  CAS  PubMed  Google Scholar 

  • Waugh J, Goa KL (2003) Escitalopram: a review of its use in the management of major depressive and anxiety disorders. CNS Drugs 17:343–362

    Article  CAS  PubMed  Google Scholar 

  • Witchel HJ, Pabbathi VK, Hofmann G, Paul AA, Hancox JC (2002) Inhibitory actions of the selective serotonin re-uptake inhibitor citalopram on HERG and ventricular L-type calcium currents. FEBS Lett 512:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yang MJ, Sim S, Jeon JH, Jeong E, Kim HC, Park YJ, Kim IB (2013) Mitral and tufted cells are potential cellular targets of nitration in the olfactory bulb of aged mice. PLoS One 8:e59673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zahradnik I, Minarovic I, Zahradnikova A (2008) Inhibition of the cardiac L-type calcium channel current by antidepressant drugs. J Pharmacol Exp Ther 324:977–984

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2012R1A1A2008274) and by the Research Fund 2012 of The Catholic University of Korea (J.S. Choi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang June Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, Y.J., Jeon, J.H., Lee, H.J. et al. Escitalopram block of hERG potassium channels. Naunyn-Schmiedeberg's Arch Pharmacol 387, 23–32 (2014). https://doi.org/10.1007/s00210-013-0911-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0911-y

Keywords

Navigation