Skip to main content

Advertisement

Log in

Voltage-dependent open-channel block of G protein-gated inward-rectifying K+ (GIRK) current in rat atrial myocytes by tamoxifen

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Tamoxifen (Tmx) is a nonsteroidal selective estrogen receptor antagonist and is frequently used in the treatment and prevention of breast cancer. The compound and its metabolites have been reported to inhibit functions of different classes of membrane proteins, including various ion channels. For members of the inward-rectifying K+ (Kir) channel family, interference of Tmx with binding of phosphatidylinositol 4,5-bisphosphate (PIP2) has been suggested as the mechanism underlying such inhibition. We have studied the inhibition of G protein-activated K+ (GIRK) current by Tmx in isolated myocytes from hearts of adult rats using whole-cell voltage clamp and experimental conditions for measuring K+ currents as inward currents (E K −50 mV; holding potential −90 mV). Extracellular Tmx reversibly inhibited GIRK current activated by acetylcholine (I K(ACh)) with an EC50 of 7.4 × 10−7 M. This inhibition was composed of two components, a basal reduction in peak current and a block that required opening of channels by ACh. The open-channel block was partially relieved by depolarizing voltage steps in a voltage- and time-dependent fashion. A voltage-dependent open-channel block was not observed when I K(ACh) was measured as outward current (E K −90 mV; holding potential −40 mV). Intracellular application of Tmx via the patch clamp pipette at a concentration (7 × 10−6 M) that caused a rapid inhibition of I K(ACh) upon extracellular application did not affect the current. Intracellular application of the H2O-soluble PIP2 analog diC8-PIP2 reduced the voltage-independent component of inhibition but had no effect on voltage-dependent open-channel block. The effects of 4-hydroxy-Tmx, a major active metabolite, tested at 2 × 10−6 M, had effects on I K(ACh) analogous to those of Tmx. Inhibition of constitutive inward-rectifying K+ current (I K1) in ventricular myocytes, carried by Kir2 complexes, by Tmx was devoid of a voltage-dependent component. This study suggests the voltage-dependent open-channel block of GIRK inward current as a novel mechanism of Tmx action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ali S, Buluwela L, Coombes RC (2011) Antiestrogens and their therapeutic applications in breast cancer and other diseases. Annu Rev Med 62:217–232

    Article  PubMed  CAS  Google Scholar 

  • Anumonwo JM, Lopatin AN (2010) Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol 48:45–54

    Article  PubMed  CAS  Google Scholar 

  • Beckmann C, Rinne A, Littwitz C, Mintert E, Bösche LI, Kienitz MC, Pott L, Bender K (2008) G protein-activated (GIRK) current in rat ventricular myocytes is masked by constitutive inward rectifier current (I K1). Cell Physiol Biochem 21:259–268

    Article  PubMed  CAS  Google Scholar 

  • Bender K, Wellner-Kienitz MC, Inanobe A, Meyer T, Kurachi Y, Pott L (2001) Overexpression of monomeric and multimeric GIRK4 subunits in rat atrial myocytes removes fast desensitization and reduces inward rectification of muscarinic K+ current (I K(ACh)). J Biol Chem 276:28873–28880

    Article  PubMed  CAS  Google Scholar 

  • Borgna JL, Rochefort H (1981) Hydroxylated metabolites of tamoxifen are formed in vivo and bound to estrogen receptor in target tissues. J Biol Chem 256:859–868

    PubMed  CAS  Google Scholar 

  • Brandts B, Brandts A, Wellner-Kienitz MC, Zidek W, Schlüter H, Pott L (1998) Non-receptor-mediated activation of I K(ATP) and inhibition of I K(ACh) by diadenosine polyphosphates in guinea-pig atrial myocytes. J Physiol 512:407–420

    Article  PubMed  CAS  Google Scholar 

  • Cha TJ, Ehrlich JR, Chartier D, Qi XY, Xiao L, Nattel S (2006) Kir3-based inward rectifier potassium current: potential role in atrial tachycardia remodeling effects on atrial repolarization and arrhythmias. Circulation 113:1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Lee D, Lee SH, Ho WK (2005) Receptor-induced depletion of phosphatidylinositol 4,5-bisphosphate inhibits inwardly rectifying K+ channels in a receptor-specific manner. Proc Natl Acad Sci USA 102:4643–4648

    Article  PubMed  CAS  Google Scholar 

  • Dick GM, Rossow CF, Smirnov S, Horowitz B, Sanders KM (2001) Tamoxifen activates smooth muscle BK channels through the regulatory β1 subunit. J Biol Chem 276:34594–34599

    Article  PubMed  CAS  Google Scholar 

  • Dobrev D, Wettwer E, Kortner A, Knaut M, Schüler S, Ravens U (2002) Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc Res 54:397–40s4

    Article  PubMed  CAS  Google Scholar 

  • Dobrev D, Friedrich A, Voigt N, Jost N, Wetter E, Christ T, Knaut M, Ravens U (2005) The G protein-gated potassium current IK, ACh is constitutively active in patients with chronic atrial fibrillation. Circulation 112:3697–3706

    Article  PubMed  CAS  Google Scholar 

  • El Gebeily G, Fiset C (2010) 4-Hydroxytamoxifen inhibits K+ currents in mouse ventricular myocytes. Eur J Pharmacol 629:96–103

    Article  PubMed  CAS  Google Scholar 

  • El Gebeily G, Fiset C (2011) Upregulation of ventricular potassium channels by chronic tamoxifen treatment. Cardiovasc Res 90:68–76

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  • Hardy SP, deFelipe C, Valverde MA (1998) Inhibition of voltage-gated cationic channels in rat embryonic hypothalamic neurones and C1300 neuroblastoma cells by triphenylethylene antioestrogens. FEBS Lett 434:236–240

    Article  PubMed  CAS  Google Scholar 

  • He J, Kargacin ME, Kargacin GJ, Ward CA (2003) Tamoxifen inhibits Na+ and K+ currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 285:H661–H668

    PubMed  CAS  Google Scholar 

  • Hertel F, Switalski A, Mintert-Jancke E, Karavassilidou K, Bender K, Pott L, Kienitz MC (2011) A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells. PLoS One 6:e20855

    Article  PubMed  CAS  Google Scholar 

  • Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  PubMed  CAS  Google Scholar 

  • Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391:803–806

    Article  PubMed  CAS  Google Scholar 

  • Kienitz MC, Littwitz C, Bender K, Pott L (2011) Remodeling of inward rectifying K+ currents in rat atrial myocytes by overexpression of A1-adenosine receptors. Basic Res Cardiol 106:953–966

    Article  PubMed  CAS  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Liu XK, Katchman A, Ebert SN, Woosley RL (1998) The antiestrogen tamoxifen blocks the delayed rectifier potassium current, I Kr, in rabbit ventricular myocytes. J Pharmacol Exp Ther 287:877–883

    PubMed  CAS  Google Scholar 

  • Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE (2002) Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34:33–944

    Article  Google Scholar 

  • Lüscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11:301–315

    Article  PubMed  Google Scholar 

  • Meyer T, Wellner-Kienitz MC, Biewald A, Bender K, Eickel A, Pott L (2001) Depletion of phosphatidylinositol 4,5 bisphosphate by activation of PLC-coupled receptors causes slow inhibition but not desensitisation of GIRK current in atrial myocytes. J Biol Chem 276:5650–5658

    Article  PubMed  CAS  Google Scholar 

  • Pollack IF, DaRosso RC, Robertson PL, Jakacki RL, Mirro JRJ, Blatt J, Nicholson S, Packer RJ, Allen JC, Cisneros A, Jordan VC (1997) A phase I study of high-dose tamoxifen for the treatment of refractory malignant gliomas of childhood. Clin Cancer Res 3:1109–1115

    PubMed  CAS  Google Scholar 

  • Ponce-Balbuena D, Lopez-Izquierdo A, Ferrer T, Rodriguez-Menchaca AA, Arechiga-Figueroa IA, Sanchez-Chapula JA (2009) Tamoxifen inhibits inward rectifier K+2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate channel interaction. J Pharmacol Exp Ther 331:563–573

    Article  PubMed  CAS  Google Scholar 

  • Ponce-Balbuena D, Moreno-Galindo EG, Lopez-Izquierdo A, Ferrer T, Sanchez-Chapula JA (2010) Tamoxifen inhibits cardiac ATP-sensitive and acetylcholine-activated K+ currents in part by interfering with phosphatidylinositol 4,5-bisphosphate-channel interaction. J Pharmacol Sci 113:66–75

    Article  PubMed  CAS  Google Scholar 

  • Robbins J, Marsh SJ, Brown DA (2006) Probing the regulation of M (Kv7) potassium channels in intact neurons with membrane-targeted peptides. J Neurosci 26:7950–7961

    Article  PubMed  CAS  Google Scholar 

  • Slovacek L, Ansorgova V, Macingova Z, Haman L, Petera J (2008) Tamoxifen-induced QT interval prolongation. J Clin Pharm Ther 33:453–455

    Article  PubMed  CAS  Google Scholar 

  • Sui JL, Petit-Jacques J, Logothetis DE (1998) Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci USA 95:1307–1312

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Gut B, Karsai S, Wimmer AB, Wu K, Wendt-Nordahl G, Zhang W, Kathöfer S, Schoels W, Katus HA, Kiehn J, Karle CA (2003) Inhibition of cloned HERG potassium channels by the antiestrogen tamoxifen. Naunyn Schmiedeberg‘s Arch Pharmacol 368:41–48

    Article  CAS  Google Scholar 

  • Trump DL, Smith DC, Ellis PG, Rogers MP, Schold SC, Winer EP, Panella TJ, Jordan VC, Fine RL (1992) High-dose oral tamoxifen, a potential multidrug-resistance-reversal agent: phase I trial in combination with vinblastine. J Natl Cancer Inst 84:1811–1816

    Article  PubMed  CAS  Google Scholar 

  • Voigt N, Trausch A, Knaut M, Matschke K, Varro A, Van Wagoner DR, Nattel S, Ravens U, Dobrev D (2010) Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 3:472–480

    Article  PubMed  Google Scholar 

  • Yamada M (2002) The role of muscarinic K+ channels in the negative chronotropic effect of a muscarinic agonist. J Pharmacol Exp Ther 300:681–687

    Google Scholar 

  • Yamada M, Kurachi Y (1995) Spermine gates inward-rectifying muscarinic but not ATP-sensitive K+ channels in rabbit atrial myocytes. J Biol Chem 270:9289–9294

    Article  PubMed  CAS  Google Scholar 

  • Yuill KH, Borg JJ, Ridley JM, Milnes JT, Witchel HJ, Paul AA, Kozlowski RZ, Hancox JC (2004) Potent inhibition of human cardiac potassium (HERG) channels by the anti-estrogen agent clomiphene—without QT interval prolongation. Biochem Biophys Res Commun 318:556–561

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Riesterer C, Ayrall AM, Sablitzky F, Littlewood TD, Reth M (1996) Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res 24:543–548

    Article  PubMed  CAS  Google Scholar 

  • Zitron E, Kiesecker C, Luck S, Kathöfer S, Thomas D, Kreye VA, Kiehn J, Katus HA, Schoels W, Karle CA (2004) Human cardiac inwardly rectifying current I Kir2.2 is upregulated by activation of protein kinase A. Cardiovasc Res 63:520–527

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Anke Galhoff and Bing Liu for excellent technical assistance. This work was supported by FoRUM (F-658-2009) and Deutsche Stiftung für Herzforschung (F/1407).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Cécile Kienitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanheiden, S., Pott, L. & Kienitz, MC. Voltage-dependent open-channel block of G protein-gated inward-rectifying K+ (GIRK) current in rat atrial myocytes by tamoxifen. Naunyn-Schmiedeberg's Arch Pharmacol 385, 1149–1160 (2012). https://doi.org/10.1007/s00210-012-0801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0801-8

Keywords

Navigation