Skip to main content

Carvacrol attenuates mechanical hypernociception and inflammatory response

Abstract

Carvacrol is a phenolic monoterpene present in the essential oil of the family Lamiaceae, as in the genera Origanum and Thymus. We previously reported that carvacrol is effective as an analgesic compound in various nociceptive models, probably by inhibition of peripheral mediators that could be related with its strong antioxidant effect observed in vitro. In this study, the anti-hypernociceptive activity of carvacrol was tested in mice through models of mechanical hypernociception induced by carrageenan, and the involvement of important mediators of its signaling cascade, as tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), and dopamine, were assessed. We also investigated the anti-inflammatory effect of carvacrol on the model of carrageenan-induced pleurisy and mouse paw edema, and the lipopolysaccharide (LPS)-induced nitrite production in murine macrophages was observed. Systemic pretreatment with carvacrol (50 or 100 mg/kg; i.p.) inhibited the development of mechanical hypernociception and edema induced by carrageenan and TNF-α; however, no effect was observed on hypernociception induced by PGE2 and dopamine. Besides this, carvacrol significantly decreased TNF-α levels in pleural lavage and suppressed the recruitment of leukocytes without altering the morphological profile of these cells. Carvacrol (1, 10, and 100 μg/mL) also significantly reduced (p < 0.001) the LPS-induced nitrite production in vitro and did not produce citotoxicity in the murine peritoneal macrophages in vitro. The spontaneous locomotor activity of mice was not affected by carvacrol. This study adds information about the beneficial effects of carvacrol on mechanical hypernociception and inflammation. It also indicates that this monoterpene might be potentially interesting in the development of novel tools for management and/or treatment of painful conditions, including those related to inflammatory and prooxidant states.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Asakura W, Matsumoto K, Ohta H, Watanabe H (1993) Effects of alpha 2-adrenergic drugs on REM sleep deprivation-induced increase in swimming activity. Pharmacol Biochem Behav 46:111–115

    PubMed  Article  CAS  Google Scholar 

  • Baser KHC (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14:3106–3120

    PubMed  Article  CAS  Google Scholar 

  • Batista PA, Werner MFP, Oliveira EC, Burgos L, Pereira P, Brum LF, Story GM, Santos AR (2010) The Antinociceptive effect of (−)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. J Pain 11:1222–1229

    PubMed  Article  CAS  Google Scholar 

  • Ben Arfa A, Combes S, Preziosi-Bellov L, Gontard N, Chalier P (2006) Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol 43:149–154

    PubMed  Article  CAS  Google Scholar 

  • Berliocchi L, Russo R, Levato A, Fratto V, Bagetta G, Sakurada S, Sakurada T, Mercuri NB, Corasaniti MT (2009) (−)-linalool attenuates allodynia in neuropathic pain induced by spinal nerve ligation in C57/Bl6 mice. Int Rev Neurobiol 85:221–235

    PubMed  Article  CAS  Google Scholar 

  • Botelho MA, Martins J, Ruela G, Rachid RSI, Santos JA, Soares JB, França MC, Montenegro D, Ruela WS, Barros LP, Queiroz DB, Araujo RS, Sampio FC (2009) Effects of a herbal gel containing carvacrol and chalcones on alveolar bone resorption in rats on experimental periodontitis. Phytother Res 23:1439–1448

    PubMed  Article  CAS  Google Scholar 

  • Conti P, Reale M, Fiore S, Cancelli A, Angeletti PU, Dinarello CA (1988) Recombinant interleukin 1 and tumor necrosis factor acting in synergy to release thromboxane, 6-KETO-PGF1 and PGE2 by human neutrophils. Scand J Rheumatol Suppl 75:318–324

    PubMed  Article  CAS  Google Scholar 

  • Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH (1992) The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 107:660–664

    PubMed  CAS  Google Scholar 

  • Cunha TM, Verri WA Jr, Vivancos GG, Moreira IF, Reis S, Parada CA, Cunha FQ, Ferreira SH (2004) An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res 37:401–407

    PubMed  Article  CAS  Google Scholar 

  • Cunha TM, Verri WA Jr, Silva JS, Poole S, Cunha FQ, Ferreira SH (2005) A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. PNAS 102:1755–1760

    PubMed  Article  CAS  Google Scholar 

  • De Sousa DP, Gonçalves JCR, Quintans-Júnior LJ, Cruz JS, Araújo DAM, Almeida RN (2006a) Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neurosci Lett 401:231–235

    PubMed  Article  Google Scholar 

  • De Sousa DP, Oliveira FS, Almeida RN (2006b) Evaluation of the central activity of hydroxydihydrocarvone. Biol Pharm Bull 29:811–812

    PubMed  Article  Google Scholar 

  • Dray A (1995) Inflammatory mediators of pain. Br J Anaesth 75:125–131

    PubMed  CAS  Google Scholar 

  • Ferreira SH (1990) A classification of peripheral analgesics based upon their mode of action. In: Sandier M, Collins G (eds) Migraine: a spectrum of ideas. Oxford, New York, pp 136–145

    Google Scholar 

  • Ferreira SH, Nakamura M (1979) Prostaglandin hyperalgesia, a cAMP/Ca2+ dependent process. Prostaglandins 18:179–190

    PubMed  Article  CAS  Google Scholar 

  • Ferreira SH, Nakamura M, de Abreu Castro MS (1978) The hyperalgesic effects of prostacyclin and prostaglandin E2. Prostaglandins 16:31–37

    PubMed  Article  CAS  Google Scholar 

  • Ferreira SH, Lorenzetti BB, Poole S (1993) Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br J Pharmacol 110:1227–1231

    PubMed  CAS  Google Scholar 

  • Feucht CL, Patel DR (2010) Analgesics and anti-inflammatory medications in sports: use and abuse. Pediatr Clin N Am 57:751–774

    Article  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JJ, Tannebaum SR (1982) Analysis of nitrate, nitrite and [15 N] nitrate in biological fluid. Anal Biochem 126:131–138

    PubMed  Article  CAS  Google Scholar 

  • Guimarães AG, Oliveira GF, Melo MS, Cavalcanti SC, Antoniolli AR, Bonjardim LR, Silva FA, Santos JP, Rocha RF, Moreira JC, Araújo AA, Gelain DP, Quintans-Júnior LJ (2010) Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin Pharmacol Toxicol 107:949–957

    PubMed  Article  Google Scholar 

  • Haddad JJ (2007) Molecular regulation of inflammatory pain and hyperalgesia—is Nf-κB the lynchpin? Focus article and critical review. EXCLI Journal 6:68–92

    Google Scholar 

  • Henriques MG, Silva PM, Martins MA, Flores CA, Cunha FQ, Assreuy-Filho J, Cordeiro RS (1987) Mouse paw edema. A new model for inflammation? Braz J Med Biol Res 20:243–249

    PubMed  CAS  Google Scholar 

  • Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H (2010) Carvacrol, a component of thyme oil, activates PPAR alpha and gamma, and suppresses COX-2 expression. J Lipid Res 51:132–139

    PubMed  Article  Google Scholar 

  • Ipek E, Ayaz TB, Zeytinoglu H (2003) Effects of carvacrol on sister chromatid exchanges in human lymphocyte cultures. Cytotechnology 43:145–148

    PubMed  Article  Google Scholar 

  • Ipek E, Zeytinoglu H, Okay S, Tuylu BA, Kurkcuoglu M, Baser KHC (2005) Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem 93:551–556

    Article  CAS  Google Scholar 

  • Jukic M, Politeo O, Maksimovic M, Milos M, Milos M (2007) In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother Res 21:259–261

    PubMed  Article  CAS  Google Scholar 

  • Karkabounas S, Kostoula OK, Daskalou T, Veltsistas P, Karamousis M, Zelovitis I, Metsios A, Lekkas P, Evangelou AM, Kotsis N, Skoufos I (2006) Anticarcinogenic and antiplatelet effects of carvacrol. Exp Oncol 28:121–125

    PubMed  CAS  Google Scholar 

  • Kasama T, Miwa Y, Isozaki T, Odai T, Adachi M, Kunkel SL (2005) Neutrophil-derived cytokines potential therapeutic targets in inflammation. Curr Drug Targets Inflamm Allergy 4:273–279

    PubMed  Article  CAS  Google Scholar 

  • Koparal AT, Zeytinoglu M (2005) Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549. Cytotecnology 43:149–154

    Article  Google Scholar 

  • Lee SP, Buber MT, Yang Q, Cerne R, Corte's RY, Sprous DG, Bryant RW (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br J Pharmacol 153:1739–1749

    PubMed  Article  CAS  Google Scholar 

  • Levy L (1969) Carrageenan paw oedema in the mouse. Life Sci 8:601–606

    PubMed  Article  CAS  Google Scholar 

  • Luo ZD (2004) Mechanistic dissection of pain: from DNA to animal models. Methods Mol Med 99:1–10

    PubMed  Google Scholar 

  • Lyons CR (1995) The role of nitric oxide in inflammation. Adv Immunol 60:323–371

    PubMed  Article  CAS  Google Scholar 

  • Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532

    PubMed  Article  CAS  Google Scholar 

  • Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52:127–136

    PubMed  Article  CAS  Google Scholar 

  • Melo MS, Sena LCS, Barreto FJN, Bonjardim LR, Almeida JRGS, Lima JT, De Sousa DP, Quintans-Júnior LJ (2010a) Antinociceptive effect of citronellal in mice. Pharm Biol 48:411–416

    PubMed  Article  CAS  Google Scholar 

  • Melo FH, Venâncio ET, De Sousa DP, Fonteles MMF, de Vasconcelos SM, Viana GS, de Sousa FC (2010b) Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission. Fundam Clin Pharmacol 24:437–443

    PubMed  Article  CAS  Google Scholar 

  • Melo FH, Moura BA, de Sousa DP, de Vasconcelos SM, Macedo DS, Fonteles MM, Viana GS, de Sousa FC (2011a) Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: involvement of dopaminergic system. Fundam Clin Pharmacol 25:362–367

    PubMed  Article  CAS  Google Scholar 

  • Melo MS, Santana MT, Guimarães AG, Siqueira RS, De Sousa DP, Santos MRV, Bonjardim LR, Araujo AAS, Onofre ASC, Lima JT, Almeida RN, Quintans-Júnior LJ (2011b) Bioassay-guided evaluation of central nervous system effects of citronellal in rodents. Braz J Pharmacogn 21:697–703

    CAS  Google Scholar 

  • Miller MUS, Grisham MB (1995) Nitric oxide as a mediator of inflammation: you had better believe it. Mediators Inflamm 4:387–396

    PubMed  Article  CAS  Google Scholar 

  • Moraes LA, Piqueras L, Bishop-Bailey D (2006) Peroxisome proliferator-activated receptors and inflammation. Pharmacol Ther 110:371–385

    PubMed  Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    PubMed  Article  CAS  Google Scholar 

  • Neves IA, de Oliveira JCS, Camara CAG, Schwartz MOE (2008) Chemical composition of the leaf oils of Lippia gracilis Schauer from two Localities of Pernambuco. J Essent Oil Res 20:157–160

    CAS  Google Scholar 

  • Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45:300–309

    PubMed  Article  CAS  Google Scholar 

  • Passos CS, Arbo MD, Rates SMK, Von Poser GL (2009) Terpenóides com atividade sobre o Sistema Nervoso Central (SNC). Braz J Pharmacogn 19:140–149

    CAS  Google Scholar 

  • Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MD (2002) Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 9:721–726

    PubMed  Article  CAS  Google Scholar 

  • Peana AT, De Montis MG, Sechi S, Sircana G, D’Aquila PS, Pippia P (2004) Effects of (−)-linalool in the acute hyperalgesia induced by carrageenan, L-glutamate and prostaglandin E2. Eur J Pharmacol 497:279–284

    PubMed  Article  CAS  Google Scholar 

  • Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain 3:1–8

    Article  Google Scholar 

  • Posadas I, Bucci M, Roviezzo F, Rossi A, Parente L, Sautebin L, Cirino G (2004) Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol 142:331–338

    PubMed  Article  CAS  Google Scholar 

  • Quintans-Júnior LJ, Guimarães AG, Araújo BES, Oliveira GF, Santana MT, Moreira FV, Santos MRV, Cavalcanti SCH, De Lucca JW, Botelho MA, Ribeiro LAA, Nóbrega FFF, Almeida RN (2010) Carvacrol, (−)-borneol and citral reduce convulsant activity in rodents. Afr J Biotechnol 9:6566–6572

    Google Scholar 

  • Quintão NL, da Silva GF, Antonialli CS, Rocha LW, Filho Valdir C, Cicció JF (2010) Chemical composition and evaluation of the anti-hypernociceptive effect of the essential oil extracted from the leaves of Ugni myricoides on inflammatory and neuropathic models of pain in mice. Planta Med 76:1411–1418

    PubMed  Article  Google Scholar 

  • Sachs D, Villarreal CF, Cunha FQ, Parada CA, Ferreira SH (2009) The role of PKA and PKCε pathways in prostaglandin E2-mediated hypernociception. Br J Pharmacol 156:826–834

    PubMed  Article  CAS  Google Scholar 

  • Sosa S, Altinier G, Politi M, Braca A, Morelli I, Della Loggia R (2005) Extracts and constituents of Lavandula multifida with topical anti-inflammatory activity. Phytomedicine 12:271–277

    PubMed  Article  CAS  Google Scholar 

  • Tao F, Tao YX, Zhao C, Doré S, Liaw WJ, Raja SN, Johns RA (2004) Differential roles of neuronal and endothelial nitric oxide synthases during carrageenan-induced inflammatory hyperalgesia. Neuroscience 128:421–430

    PubMed  Article  CAS  Google Scholar 

  • Villarreal CF, Funez MI, Figueiredo F, Cunha FQ, Parada CA, Ferreira SH (2009) Acute and persistent nociceptive paw sensitisation in mice: the involvement of distinct signalling pathways. Life Sci 85:822–829

    PubMed  Article  CAS  Google Scholar 

  • Wagner H, Wierer M, Bauer R (1986) In vitro inhibition of prostaglandin biosynthesis by essential oils and phenolic compounds. Planta Med 52:184–187

    Article  Google Scholar 

  • Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S (1997) Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor α. Br J Pharmacol 121:417–424

    PubMed  Article  CAS  Google Scholar 

  • Xu H, Delling M, Jun JC, Clapham DE (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9:628–635

    PubMed  Article  CAS  Google Scholar 

  • Yang EJ, Yim EY, Song G, Kim GO, Hyun CG (2009) Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts. Interdiscip Toxicol 2:245–249

    PubMed  Article  Google Scholar 

  • Yanishlieva NV, Marinova EM, Gordon MH, Raneva VG (1999) Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem 64:59–66

    Article  CAS  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Osvaldo Andrade Santos for the technical support. This work was supported by grants from the National Council of Technological and Scientific Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq/Brazil) (grant number 305783/2010-6) and the Research Supporting Foundation of State of Sergipe (Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe/FAPITEC-SE) (grant number 019.203.00860/2009-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucindo J. Quintans-Júnior.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guimarães, A.G., Xavier, M.A., de Santana, M.T. et al. Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn-Schmiedeberg's Arch Pharmacol 385, 253–263 (2012). https://doi.org/10.1007/s00210-011-0715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0715-x

Keywords

  • Monoterpene
  • Carvacrol
  • Mechanical hypernociception
  • Inflammation
  • TNF-α