Skip to main content

Advertisement

Log in

Complementary anti-inflammatory effects of a β-blocker and a corticosteroid in an asthma model

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Glucocorticosteroids are the mainstay treatment for chronic asthma; however, adverse effects can limit their usefulness. We previously determined in experimental asthma that chronic administration of β2-adrenoceptor inverse agonists reduced airway hyperresponsiveness and indexes of inflammation. However, the effect of co-administration of glucocorticosteroids with β2-adrenoceptor inverse agonists is unknown. Therefore, we evaluated the anti-inflammatory effect of co-administration of dexamethasone, a glucocorticosteroid, and nadolol, a β2-inverse agonist, in a murine asthma model. We measured eosinophils and cytokines in bronchoalveolar lavage fluid and mucin content in epithelial cells after exposure to different concentrations of dexamethasone and nadolol. Dexamethasone was administered for 3 days and nadolol for 24 days prior to ovalbumin challenge. Both drugs were continued during five daily intranasal challenges with ovalbumin. Independent administration of dexamethasone (0.4 mg/kg/day) or nadolol (25 ppm) reduced bronchoalveolar lavage eosinophils by 58% and 36%, respectively (P < 0.05). Co-administration of both drugs yielded an additive reduction in eosinophils (81%, P < 0.05). Co-administration of both drugs (dexamethasone 0.4 mg/kg/day and nadolol 25 ppm) also yielded a greater reduction in mucin volume density (83%) than either drug alone (18% for dexamethasone and 62% for nadolol) and greater than high-dose dexamethasone (71%) alone (P < 0.05). Similarly, co-administration of both drugs (dexamethasone 0.4 mg/kg/day and nadolol 25 ppm) yielded an additive effect on the reduction of type 2 cytokines in bronchoalveolar lavage fluid equivalent to the administration of a 10-fold higher dose of dexamethasone. In Summary, the simultaneous administration of a glucocorticosteroid and a β2-adrenoceptor inverse agonist was more effective at reducing indexes of airway inflammation than either drug given alone; suggesting nadolol may possess “glucocorticoid-sparing” properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnes PJ (1990) Effect of corticosteroids on airway hyperresponsiveness. Am Rev Respir Dis 141(2 Pt 2):S70–S76

    PubMed  CAS  Google Scholar 

  • Barnes PJ (1995) Inhaled glucocorticoids for asthma. N Engl J Med 332(13):868–875

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ, Chung KF, Page CP (1988) Inflammatory mediators and asthma. Pharmacol Rev 40(1):49–84

    PubMed  CAS  Google Scholar 

  • Bond RA, Leff P, Johnson TD, Milano CA, Rockman HA, McMinn TR et al (1995) Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta 2-adrenoceptor. Nature 374(6519):272–276

    Article  PubMed  CAS  Google Scholar 

  • Busse WW, Sedgwick JB (1992) Eosinophils in asthma. Ann Allergy 68(3):286–290

    PubMed  CAS  Google Scholar 

  • Callaerts-Vegh Z, Evans KL, Dudekula N, Cuba D, Knoll BJ, Callaerts PF et al (2004) Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci USA 101(14):4948–4953

    Article  PubMed  CAS  Google Scholar 

  • Corrigan CJ, Kay AB (1991) The roles of inflammatory cells in the pathogenesis of asthma and of chronic obstructive pulmonary disease. Am Rev Respir Dis 143((5 Pt 1)):1165–1168, discussion 1175–1166

    PubMed  CAS  Google Scholar 

  • Evans CM, Williams OW, Tuvim MJ, Nigam R, Mixides GP, Blackburn MR et al (2004) Mucin is produced by clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol 31(4):382–394

    Article  PubMed  CAS  Google Scholar 

  • Fahy JV (2002) Goblet cell and mucin gene abnormalities in asthma. Chest 122(6 Suppl):320S–326S

    Article  PubMed  CAS  Google Scholar 

  • Hanania NA, Chapman KR, Kesten S (1995a) Adverse effects of inhaled corticosteroids. Am J Med 98(2):196–208

    Article  PubMed  CAS  Google Scholar 

  • Hanania NA, Chapman KR, Sturtridge WC, Szalai JP, Kesten S (1995b) Dose-related decrease in bone density among asthmatic patients treated with inhaled corticosteroids. J Allergy Clin Immunol 96(5 Pt 1):571–579

    Article  PubMed  CAS  Google Scholar 

  • Hanania NA, Singh S, El-Wali R, Flashner M, Franklin AE, Garner WJ et al (2008) The safety and effects of the beta-blocker, nadolol, in mild asthma: an open-label pilot study. Pulm Pharmacol Ther 21(1):134–141

    Article  PubMed  CAS  Google Scholar 

  • Hanania NA, Mannava B, Franklin AE, Lipworth BJ, Williamson PA, Garner WJ et al (2010) Response to salbutamol in patients with mild asthma treated with nadolol. Eur Respir J 36(4):963–965, Official journal of the European Society for Clinical Respiratory Physiology

    Article  PubMed  CAS  Google Scholar 

  • Hansel TT (2004) How do we measure the effectiveness of inhaled corticosteroids in clinical studies? Respir Med 98((Suppl B)):9–15

    Article  Google Scholar 

  • Laitinen LA, Laitinen A, Haahtela T (1992) A comparative study of the effects of an inhaled corticosteroid, budesonide, and a beta 2-agonist, terbutaline, on airway inflammation in newly diagnosed asthma: a randomized, double-blind, parallel-group controlled trial. J Allergy Clin Immunol 90(1):32–42

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Peng H, Nguyen LP, Dudekula NB, Shardonofsky F, Knoll BJ et al (2008) Changes in beta 2-adrenoceptor and other signaling proteins produced by chronic administration of ‘beta-blockers’ in a murine asthma model. Pulm Pharmacol Ther 21(1):115–124

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam SJ, Clement CG, De la Garza MM, Zou X, Travis EL, Young HW et al (2008) Haemophilus influenzae lysate induces aspects of the chronic obstructive pulmonary disease phenotype. Am J Respir Cell Mol Biol 38(6):629–638

    Article  PubMed  CAS  Google Scholar 

  • Nguyen LP, Omoluabi O, Parra S, Frieske JM, Clement C, Ammar-Aouchiche Z et al (2008) Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol 38(3):256–262

    Article  PubMed  CAS  Google Scholar 

  • Nguyen LP, Lin R, Parra S, Omoluabi O, Hanania NA, Tuvim MJ et al (2009) Beta2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci USA 106(7):2435–2440

    Article  PubMed  CAS  Google Scholar 

  • Pauwels RA, Lofdahl CG, Postma DS, Tattersfield AE, O’Byrne P, Barnes PJ et al (1997) Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N Engl J Med 337(20):1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Rogers DF (2004) Airway mucus hypersecretion in asthma: an undervalued pathology? Curr Opin Pharmacol 4(3):241–250

    Article  PubMed  CAS  Google Scholar 

  • Rossi GA, Cerasoli F, Cazzola M (2007) Safety of inhaled corticosteroids: room for improvement. Pulm Pharmacol Ther 20(1):23–35

    Article  PubMed  CAS  Google Scholar 

  • Schleimer RP (1990) Effects of glucocorticosteroids on inflammatory cells relevant to their therapeutic applications in asthma. Am Rev Respir Dis 141(2 Pt 2):S59–S69

    PubMed  CAS  Google Scholar 

  • Shimura S, Sasaki T, Ikeda K, Yamauchi K, Sasaki H, Takishima T (1990) Direct inhibitory action of glucocorticoid on glycoconjugate secretion from airway submucosal glands. Am Rev Respir Dis 141(4 Pt 1):1044–1049

    PubMed  CAS  Google Scholar 

  • Sont JK, Han J, van Krieken JM, Evertse CE, Hooijer R, Willems LN et al (1996) Relationship between the inflammatory infiltrate in bronchial biopsy specimens and clinical severity of asthma in patients treated with inhaled steroids. Thorax 51(5):496–502

    Article  PubMed  CAS  Google Scholar 

  • Suissa S, Ernst P, Benayoun S, Baltzan M, Cai B (2000) Low-dose inhaled corticosteroids and the prevention of death from asthma. N Engl J Med 343(5):332–336

    Article  PubMed  CAS  Google Scholar 

  • Trifilieff A, El-Hashim A, Bertrand C (2000) Time course of inflammatory and remodeling events in a murine model of asthma: effect of steroid treatment. Am J Physiol Lung Cell Mol Physiol 279(6):L1120–L1128

    PubMed  CAS  Google Scholar 

  • Weatherall M, Clay J, James K, Perrin K, Shirtcliffe P, Beasley R (2009) Dose-response relationship of inhaled corticosteroids and cataracts: a systematic review and meta-analysis. Respirology 14(7):983–990

    Article  PubMed  Google Scholar 

  • Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S et al (2007) A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci USA 104(42):16657–16662

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by training grant 5T32AI053831 to Long P. Nguyen and research grant 5R01AI079236-02 to Bond, Dickey, and Tuvim, both from the National Institutes of Health. The authors wish to thank Professor Brian J. Knoll for his support and scientific critique of this manuscript.

Conflicts of interests

Richard A. Bond is a shareholder in Inverseon, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Bond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, L.P., Singh, B., Okulate, A.A. et al. Complementary anti-inflammatory effects of a β-blocker and a corticosteroid in an asthma model. Naunyn-Schmiedeberg's Arch Pharmacol 385, 203–210 (2012). https://doi.org/10.1007/s00210-011-0692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0692-0

Keywords

Navigation