Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 384, Issue 6, pp 525–533 | Cite as

Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents

  • Nayrton Flávio Moura Rocha
  • Emiliano Ricardo Vasconcelos Rios
  • Alyne Mara Rodrigues Carvalho
  • Gilberto Santos Cerqueira
  • Amanda de Araújo Lopes
  • Luzia Kalyne Almeida Moreira Leal
  • Marília Leite Dias
  • Damião Pergentino de Sousa
  • Francisca Cléa Florenço de Sousa
ORIGINAL ARTICLE

Abstract

(−)-α-Bisabolol is an unsaturated, optically active sesquiterpene alcohol obtained by the direct distillation of essential oil from plants such as Vanillosmopsis erythropappa and Matricaria chamomilla. (−)-α-Bisabolol has generated considerable economic interest, as it possesses a delicate floral odour and has been shown to have antiseptic and gastroprotective activities. In this study, (−)-α-bisabolol was tested in standardised rodent models by gavage administration at doses of 100 and 200 mg/kg in the models of inflammation and 25 and 50 mg/kg in the models of nociception. In the inflammatory models of paw oedema induced by carrageenan and dextran, the mice treated with (−)-α-bisabolol showed smaller oedemas compared to animals treated only with the vehicle. (−)-α-Bisabolol was capable of reducing paw oedemas induced by 5-HT but not oedemas induced by histamine. (−)-α-Bisabolol demonstrated anti-nociceptive activity in the models of visceral nociception induced by acetic acid and in the second phase of the nociception test induced by the intraplantar administration of formalin. (−)-α-Bisabolol did not have any effect in a thermal nociception model using a hot plate but was able to diminish mechanical inflammatory hypernociception evoked by carrageenan. These findings suggest that the anti-nociceptive action of (−)-α-bisabolol is not linked to a central mechanism but instead is related to the inflammatory process. (−)-α-Bisabolol was able to decrease leukocyte migration, protein extravasations and the amount of TNF-α to the peritoneal cavity in response to carrageenan. Additionally, (−)-α-bisabolol reduced neutrophil degranulation in response to phorbol-myristate-acetate. We demonstrate, for the first time, the peripheral anti-inflammatory and anti-nociceptive activities of (−)-α-bisabolol.

Keywords

Inflammation Nociception (−)-α-Bisabolol TNF-α Neutrophil migration Natural product 

References

  1. Aggarwal BB, Natarajan K (1996) Tumor necrosis factors: developments during the last decade. Eur Cytokine Netw 7:93–124PubMedGoogle Scholar
  2. Almeida FRC, Oliveira FS (2006) Avaliação de drogas analgésicas de ação central. In: Almeida RN (ed) Psicofarmacologia: Fundamentos Práticos. Guanabara Koogan, Rio de Janeiro, pp 179–188Google Scholar
  3. Alves AM, Gonçalves JC, Cruz JS, Araújo DA (2010) Evaluation of the sesquiterpene (−)-alpha-bisabolol as a novel peripheral nervous blocker. Neurosci Lett 472:11–15CrossRefGoogle Scholar
  4. Araújo FLO, Melo CTV, Rocha NFM, Moura BA et al (2009) Antinociceptive effects of (O-methyl)-N-benzoyl tyramine (riparin I) from Aniba riparia (Nees) Mez (Lauraceae) in mice. NaunSchm Arch Pharmacol 380:337–344CrossRefGoogle Scholar
  5. Berkenkopf JW, Weichman BM (1988) Production of prostacyclin in mice following intraperitoneal injection of acetic acid, phenylbenzoquinone and zymosan: its role in the writhing response. Prostaglandins 36:693–709PubMedCrossRefGoogle Scholar
  6. Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest 21:77–89CrossRefGoogle Scholar
  7. Bradley PP, Christensen RD, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60:618–622PubMedGoogle Scholar
  8. Braga PC, Dal Sasso M, Fonti E, Culici M (2009) Antioxidant activity of bisabolol: inhibitory effects on chemiluminescence of human neutrophil bursts and cell-free systems. Pharmacology 83:110–115PubMedCrossRefGoogle Scholar
  9. Brown P, Ganey PE (1995) Neutrophil degranulation and superoxide production induced by polychlorinated biphenyls are calcium dependent. Toxicol Appl Pharmacol 131:198–205PubMedCrossRefGoogle Scholar
  10. Collier HO, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in mouse. Br J Pharmacol Chemother 32:295–310PubMedGoogle Scholar
  11. Crosara DP, Ribeiro RA, Moraes-Filho MO, Porto PR, Cunha FQ, Ferreira SH (1995) Tumor necrosis factor accounts for the neutrophil emigration activity released by cultured malignant fibrous histiocytoma cells. Braz J Med Biol Res 28(6):671–678PubMedGoogle Scholar
  12. Cunha FQ, Lorenzetti BB, Poole S, Ferreira SH (1991) Interleukin-8 as a mediator of sympathetic pain. Br J Pharmacol 104:765–767PubMedGoogle Scholar
  13. Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH (1992) The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 107:660–664PubMedGoogle Scholar
  14. Cunha FM, Fröde TS, Mendes GL, Yunes RA, Calixto JB (2001) Additional evidence for the anti-inflammatory and anti-allergic properties of the sesquiterpene polygodial. Life Sci 70:159–169PubMedCrossRefGoogle Scholar
  15. Cunha TM, Verri WA Jr, Silva JS, Poole S, Cunha FQ, Ferreira SH (2005) A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci USA 102(5):1755–1760PubMedCrossRefGoogle Scholar
  16. Cunha TM, Verri WA Jr, Schivo IR, Napimoga MH, Parada CA, Poole S, Teixeira MM, Ferreira SH, Cunha FQ (2008) Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 83(4):824–832PubMedCrossRefGoogle Scholar
  17. de Lira PN, Andrade EH, Sousa PJ, Silva NN et al (2009) Essential oil composition of three Peperomia species from the Amazon, Brazil. Nat Prod Commun 4:427–430PubMedGoogle Scholar
  18. Deraedt R, Jouquey S, Benzoni J, Peterfalvi M (1976) Inhibition of prostaglandins biosynthesis by non-narcotic analgesic drugs. Arch Int Pharmacodyn Ther 224:30–42PubMedGoogle Scholar
  19. Di Rosa M, Giroud JP, Willoughby DA (1971) Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol 104:15–29PubMedCrossRefGoogle Scholar
  20. Eddy NB, Leimbach DJ (1953) Synthetic analgesics. II. Dithienylbutenyl and dithienylbutilamines. J Pharmac Exp Ther 107:385–393Google Scholar
  21. Elisabetsky E, Amador TA, Albuquerque RR, Nunes DS et al (1995) Analgesic activity of Psychotria colorata (wild ex Ret S) Muell. Arg Alkaloids J Ethnopharmacol 48:77–83CrossRefGoogle Scholar
  22. Frosch F (1987) Bioactive substances from BASF for cosmetics. Tluszce, Srodki Piorace, Kosmet 31:144–147Google Scholar
  23. Graeme B, Ryan MB, Majno G (1977) Acute inflammation. Am J Pathol 86:185–274Google Scholar
  24. Guo L, Ye C, Chen W, Ye H et al (2008) Anti-inflammatory and analgesic potency of carboxyamidotriazole, a tumoristatic agent. American Society for Pharmacology and Experimental Therapeutics (ASPET) 325:10–16CrossRefGoogle Scholar
  25. Gupta M, Mazumdar UK, Sivakumar T et al (2003) Evaluation of anti-inflammatory activity of chloroform extract of Bryonia laciniosa in experimental animal models. Biol Pharm Bull 26:1342–1344PubMedCrossRefGoogle Scholar
  26. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017PubMedGoogle Scholar
  27. Henriques MG, Silva PM, Martins MA, Flores CA et al (1987) Mouse paw edema. A new model for inflammation? Braz J Med Biol Res 20:243–249PubMedGoogle Scholar
  28. Hunskaar S, Fasmer OB, Hole K (1985) Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Meth 14:69–76CrossRefGoogle Scholar
  29. Koster R, Anderson M, de Beer J (1959) Acetic acid for analgesic screening. Fed Proc 18:412–417Google Scholar
  30. Kumar V, Abbas AK, Fausto N, Mitchell R (2007a) Robbins basic pathology. Saunders, PhiladelphiaGoogle Scholar
  31. Kumar V, Abbas AK, Fausto N, Mitchell R (2007b) Robbins basic pathology. Saunders, Philadelphia, pp 31–53Google Scholar
  32. Laine L, Takeuchi K, Tarnawski A (2008) Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology 135:41–60PubMedCrossRefGoogle Scholar
  33. Leal LK, Canuto KM, da Silva Costa KC, Nobre-Júnior HV et al (2008) Effects of amburoside A and isokaempferide, polyphenols from Amburana cearensis, on rodent inflammatory processes and myeloperoxidase activity in human neutrophils. Basic Clin Pharm Toxicology 104:198–205CrossRefGoogle Scholar
  34. Levy L (1969) Carrageenan paw edema in the mouse. Life Sci 8:601–606PubMedCrossRefGoogle Scholar
  35. Li M, Shang X, Zhang R, Jia Z et al (2010) Antinociceptive and anti-inflammatory activities of iridoid glycosides extract of Lamiophlomis rotata (Benth.) Kudo. Fitoterapia 81:167–172PubMedCrossRefGoogle Scholar
  36. Lo TN, Almeida AP, Beaven MA (1982) Dextran and carrageenan evoke different inflammatory response in rat with respect to composition of infiltrates and effect of indomethacin. J Pharmacol Exp Ther 221:261–267PubMedGoogle Scholar
  37. Lorenzetti BB, Veiga FH, Canetti CA, Poole S, Cunha FQ, Ferreira SH (2002) Cytokine-induced neutrophil chemoattractant 1 (CINC-1) mediates the sympathetic component of inflammatory mechanical hypersensitivity in rats. Eur Cytokine Netw 13:456–461PubMedGoogle Scholar
  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJJ (1951) Protein measurement with the Folin-phenol reagents. Biol Chem 193:265–275Google Scholar
  39. Lucisano YM, Mantovani B (1984) Lysosomal enzyme release from polymorphonuclear leukocytes induced by immune complexes of IgM and of IgG. J Immunol 132:2015–2020PubMedGoogle Scholar
  40. Malmberg AB, Yaksh TL (1992) Antinociceptive actions of spinal anti-inflammatory agents on the formalin test in the rat. Jour of Pharma and Experim Therap 263:136–146Google Scholar
  41. McAndrew BA (1992) Sesquiterpenoids: the lost dimension of perfumery. Perfum Flavour 17:1–17Google Scholar
  42. Moreno-Fernandes M, Alvares-Pereira N, Gonçalves-Paulo L (1992) Anti-inflammatory activity of copaíba balsam (Copaifera cearensis, Huber). Rev Bras Farm 73:53–56Google Scholar
  43. Padaratz P, Fracasso M, Corrêa R, Niero R et al (2009) Antinociceptive activity of a new benzofuranone derived from a chalcone. Basic Clin Pharmacol Toxicol 115:257–261CrossRefGoogle Scholar
  44. Petrović S, Dobrić S, Mimica-Dukić N, Simin N (2008) The antiinflammatory, gastroprotective and antioxidant activities of Hieracium gymnocephalum extract. Phytother Res 22:1548–1551PubMedCrossRefGoogle Scholar
  45. Posadas I, Bucci M, Roviezzo F, Rossi A, Parente L, Sautebin L, Cirino G (2004) Carrageenan-induced mouse paw edema is biphasic, age-weight dependent and displays differential nitric oxide and cyclooxygenase-2 expression. Br J Pharmacology 142:331–338CrossRefGoogle Scholar
  46. Reynolds JEF (1996) Martindale, the extra pharmacopoeia. The Pharmaceutical, LondonGoogle Scholar
  47. Ribeiro RA, Vale ML, Thomazzi SM, Paschoalato ABPETAL (2000) Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol 387:111–118PubMedCrossRefGoogle Scholar
  48. Rocha NFM, Venâncio ER, Moura BA, Silva MIG (2009) Gastroprotection of (−)-a-bisabolol on acute gastric mucosal lesions in mice: the possible involved pharmacological mechanisms. Fund & Clin Pharm 380:233–245Google Scholar
  49. Salustiano ME, Ferraz Filho AC, Pozza EA, Castro HA (2006) Extratos de candeia (Eremanthus erythropappus (DC.) MacLeish) na inibição in vitro de Cylindrocladium scoparium e de quatro espécies de ferrugens. Cerne 12:189–193Google Scholar
  50. Schoenfeld P, Kimmey MB, Scheiman J, Bjorkman D et al (1999) Review article: nonsteroidal anti-inflammatory drug-associated gastrointestinal complications—guidelines for prevention and treatment. Aliment Pharmacol Ther 13:1273–1285PubMedCrossRefGoogle Scholar
  51. Shibata M, Ohkubo T, Takahashi H, Inoki R (1989) Modified formalin test: characteristic biphasic pain response. Pain 38:347–352PubMedCrossRefGoogle Scholar
  52. Silva MI, Moura BA, Rocha NFM, Carvalho AMR (2009) Gastroprotective activity of isopulegol on experimentally induced gastric lesions in mice: investigation of possible mechanisms of action. Naun Schm Arch Pharmacology 380:233–245CrossRefGoogle Scholar
  53. Souza GEP, Ferreira SH (1985) Blockade by antimacrophage serum of the migration of PMN neutrophils into the inflamed peritoneal cavity. Inflamm Res 17:97–103Google Scholar
  54. Stepanovic-Petrovic RM, Tomic MA, Vuckovic SM, Paranos S et al (2008) The antinociceptive effects of anticonvulsants in a mouse visceral pain model. Anesth Analg 106:1897–1903PubMedCrossRefGoogle Scholar
  55. Tauber AI, Cox JA, Curnutte JT, Carrol PM et al (1989) Activation of human neutrophil NADPH-oxidase in vitro by the catalytic fragment of protein kinase-C. Biochem Biophys Res Commun 1583:884–890CrossRefGoogle Scholar
  56. Taylor CA, Senchyna M, Flanagan J, Joyce EM, Cliche DO, Boone AN, Culp-Stewart S, Thompson JE (2004) Role of eIF5A in TNF-α-mediated apoptosis of lamina cribrosa cells. IOVS 45(10):3568–3576Google Scholar
  57. Torrado S, Torrado S, Agis A, Jimenez ME, Cadórniga R (1995) Effect of dissolution profile and (−)-α-bisabolol on the gastrotoxicity of acetylsalicylic acid. Pharmazie 50:141–143PubMedGoogle Scholar
  58. Vichnewski W, Takahashi AM, Nasi AMT, Gonçalves DCRG, Dias DA, Lopes JNC, Goedken VL, Gutierrez AB, Herz W (1989) Sesquiterpene lactones and other constituents from Eremanthus seidelli, E. goyazensis and Vanillosmopsis erythropappa. Phytochemistry 29:1441–1451CrossRefGoogle Scholar
  59. Vinegar R, Schreiber W, Hugo R (1969) Biphasic development of carrageenan-edema in rats. J Pharmacol Exp Ther 166:96–103PubMedGoogle Scholar
  60. Zanboori A, Tamaddonfard E, Mojtahedein A (2008) Effect of chlorpheniramine and ranitidine on the visceral nociception induced by acetic acid in rats: role of opioid system. Pak J Biol Sci 11:2428–2432PubMedCrossRefGoogle Scholar
  61. Zdunić G, Godevac D, Milenković M, Vucićević D, Savikin K, Menković N, Petrović S (2009) Evaluation of Hypericum perforatum oil extracts for an antiinflammatory and gastroprotective activity in rats. Phytother Res 23:1554–1564Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nayrton Flávio Moura Rocha
    • 1
  • Emiliano Ricardo Vasconcelos Rios
    • 1
  • Alyne Mara Rodrigues Carvalho
    • 1
  • Gilberto Santos Cerqueira
    • 1
  • Amanda de Araújo Lopes
    • 1
  • Luzia Kalyne Almeida Moreira Leal
    • 1
  • Marília Leite Dias
    • 1
  • Damião Pergentino de Sousa
    • 2
  • Francisca Cléa Florenço de Sousa
    • 1
  1. 1.Universidade Federal do CearáFortalezaBrazil
  2. 2.Universidade Federal de SergipeAracajuBrazil

Personalised recommendations