Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 383, Issue 4, pp 373–384 | Cite as

Weight loss and hypophagia after high-dose AT1-blockade is only observed after high dosing and depends on regular leptin signalling but not blood pressure

  • Helge Müller-Fielitz
  • Antonie Markert
  • Christian Wittmershaus
  • Friedrich Pahlke
  • Olaf Jöhren
  • Walter RaaschEmail author


AT1-blockade has been shown to induce weight loss in animals or patients. The aim of this study was to investigate whether weight reduction after AT1-blockade is dependent on dose, blood pressure reduction and leptin signalling. Spontaneously hypertensive rats (SHR) and lean and obese Zucker rats were treated for 4 weeks with candesartan (0, 2, 6 or 16 mg/kg/day). Body weight, food intake and hypothalamic mRNA levels of (an)orexigenic peptides were determined. Obese Zucker rats served as a model of primary leptin resistance. In SHR, body mass index and food intake were decreased selectively by 16 mg/kg/day candesartan but not after using normal (2 mg/kg/day) or supranormal (6 mg/kg/day) doses. Correlation analysis between blood pressure and body weight indicated no relationship of hypotensive potency on weight loss. The hypothalamic mRNA levels of the orexigenic peptide MCH (melanin-concentrating hormone) were diminished in parallel. Consistent to the results in SHRs, 16 mg/kg/day candesartan revealed a decrease of body weight, food intake and hypothalamic MCH mRNA levels in lean Zucker rats. In obese Zucker rats, none of these parameters were reduced by candesartan. Loss of body weight and hypophagia are not general features of AT1-blockers, since neither was seen after normal or moderately supranormal doses, but they were, after the highest doses. These actions of AT1-blockers occur independently of their ability to lower blood pressure. They do depend on an intact leptin signalling, since they were absent in obese Zucker rats that feature a genetic mutation of the leptin receptor.


Metabolic syndrome Obesity Leptin resistance Hypertension Weight loss AT1-receptor antagonist 


  1. Enalapril in Hypertension Study Group (UK) (1984) Enalapril in essential hypertension: a comparative study with propranolol. Br J Clin Pharmacol 18:51–56Google Scholar
  2. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 43:993–1002PubMedCrossRefGoogle Scholar
  3. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39PubMedCrossRefGoogle Scholar
  4. Cabassi A, Coghi P, Govoni P, Barouhiel E, Speroni E, Cavazzini S, Cantoni AM, Scandroglio R, Fiaccadori E (2005) Sympathetic modulation by carvedilol and losartan reduces angiotensin II-mediated lipolysis in subcutaneous and visceral fat. J Clin Endocrinol Metab 90:2888–2897PubMedCrossRefGoogle Scholar
  5. Campbell DJ, Duncan AM, Kladis A, Harrap SB (1995) Converting enzyme inhibition and its withdrawal in spontaneously hypertensive rats. J Cardiovasc Pharmacol 26:426–436PubMedCrossRefGoogle Scholar
  6. Carter CS, Cesari M, Ambrosius WT, Hu N, Diz D, Oden S, Sonntag WE, Pahor M (2004) Angiotensin-converting enzyme inhibition, body composition, and physical performance in aged rats. J Gerontol A Biol Sci Med Sci 59:416–423PubMedGoogle Scholar
  7. Cassis LA, Marshall DE, Fettinger MJ, Rosenbluth B, Lodder RA (1998) Mechanisms contributing to angiotensin II regulation of body weight. Am J Physiol 274:E867–E876PubMedGoogle Scholar
  8. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL (1996a) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994–996PubMedCrossRefGoogle Scholar
  9. Chua SC Jr, White DW, Wu-Peng XS, Liu SM, Okada N, Kershaw EE, Chung WK, Power-Kehoe L, Chua M, Tartaglia LA, Leibel RL (1996b) Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes 45:1141–1143PubMedCrossRefGoogle Scholar
  10. Clasen R, Schupp M, Foryst-Ludwig A, Sprang C, Clemenz M, Krikov M, Thone-Reineke C, Unger T, Kintscher U (2005) PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin. Hypertension 46:137–143PubMedCrossRefGoogle Scholar
  11. Cole BK, Keller SR, Wu R, Carter JD, Nadler JL, Nunemaker CS (2010) Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension 55:715–721PubMedCrossRefGoogle Scholar
  12. Culman J, von Heyer C, Piepenburg B, Rascher W, Unger T (1999) Effects of systemic treatment with irbesartan and losartan on central responses to angiotensin II in conscious, normotensive rats. Eur J Pharmacol 367:255–265PubMedCrossRefGoogle Scholar
  13. de Kloet AD, Krause EG, Woods SC (2010) The renin angiotensin system and the metabolic syndrome. Physiol Behav 100:525–534PubMedCrossRefGoogle Scholar
  14. de las Heras N, Ruiz-Ortega M, Ruperez M, Sanz-Rosa D, Miana M, Aragoncillo P, Mezzano S, Lahera V, Egido J, Cachofeiro V (2006) Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. Interactions with angiotensin II. J Renin Angiotensin Aldosterone Syst 7:192–200PubMedCrossRefGoogle Scholar
  15. de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Laurent D, Burkey BF (2001) Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 50:1863–1871PubMedCrossRefGoogle Scholar
  16. Elliott WJ, Meyer PM (2007) Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 369:201–207PubMedCrossRefGoogle Scholar
  17. Engeli S, Negrel R, Sharma AM (2000) Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35:1270–1277PubMedGoogle Scholar
  18. Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM (2005) Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45:356–362PubMedCrossRefGoogle Scholar
  19. Fogari R, Derosa G, Zoppi A, Rinaldi A, Lazzari P, Fogari E, Mugellini A, Preti P (2005) Comparison of the effects of valsartan and felodipine on plasma leptin and insulin sensitivity in hypertensive obese patients. Hypertens Res 28:209–214PubMedCrossRefGoogle Scholar
  20. He H, Yang D, Ma L, Luo Z, Ma S, Feng X, Cao T, Yan Z, Liu D, Tepel M, Zhu Z (2010) Telmisartan Prevents Weight Gain and Obesity Through Activation of Peroxisome Proliferator-Activated Receptor-{delta}-Dependent Pathways. HypertensionGoogle Scholar
  21. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141PubMedCrossRefGoogle Scholar
  22. Igarashi M, Hirata A, Yamaguchi H, Tsuchiya H, Ohnuma H, Tominaga M, Daimon M, Kato T (2001) Candesartan inhibits carotid intimal thickening and ameliorates insulin resistance in balloon-injured diabetic rats. Hypertension 38:1255–1259PubMedCrossRefGoogle Scholar
  23. Jöhren O, Neidert SJ, Kummer M, Dendorfer A, Dominiak P (2001) Prepro-orexin and orexin receptor mRNAs are differentially expressed in peripheral tissues of male and female rats. Endocrinology 142:3324–3331PubMedCrossRefGoogle Scholar
  24. Kansui Y, Fujii K, Nakamura K, Goto K, Oniki H, Abe I, Shibata Y, Iida M (2004) Angiotensin II receptor blockade corrects altered expression of gap junctions in vascular endothelial cells from hypertensive rats. Am J Physiol Heart Circ Physiol 287:H216–H224PubMedCrossRefGoogle Scholar
  25. Kett MM, Alcorn D, Bertram JF, Anderson WP (1996) Glomerular dimensions in spontaneously hypertensive rats: effects of AT1 antagonism. J Hypertens 14:107–113PubMedGoogle Scholar
  26. Kim S, Whelan J, Claycombe K, Reath DB, Moustaid-Moussa N (2002) Angiotensin II increases leptin secretion by 3 T3-L1 and human adipocytes via a prostaglandin-independent mechanism. J Nutr 132:1135–1140PubMedGoogle Scholar
  27. Kintscher U, Unger T (2005) Vascular protection in diabetes: a pharmacological view of angiotensin II type 1 receptor blockers. Acta Diabetol 42(Suppl 1):S26–S32PubMedCrossRefGoogle Scholar
  28. Kintscher U, Foryst-Ludwig A, Unger T (2008) Inhibiting angiotensin type 1 receptors as a target for diabetes. Expert Opin Ther Targets 12:1257–1263PubMedCrossRefGoogle Scholar
  29. Kohya T, Yokoshiki H, Tohse N, Kanno M, Nakaya H, Saito H, Kitabatake A (1995) Regression of left ventricular hypertrophy prevents ischemia-induced lethal arrhythmias. Beneficial effect of angiotensin II blockade. Circ Res 76:892–899PubMedGoogle Scholar
  30. Larsen TM, Toubro S, Astrup A (2003) PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord 27:147–161PubMedCrossRefGoogle Scholar
  31. Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C (1997) Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol 18:383–439PubMedCrossRefGoogle Scholar
  32. Lin Y, Tsuchihashi T, Kagiyama S, Matsumura K, Abe I (2001) The influence of chronic antihypertensive treatment on the central pressor response in SHR. Hypertens Res 24:173–178PubMedCrossRefGoogle Scholar
  33. Lu Q, Zhu YZ, Wong PT (2005) Neuroprotective effects of candesartan against cerebral ischemia in spontaneously hypertensive rats. NeuroReport 16:1963–1967PubMedCrossRefGoogle Scholar
  34. Madala HV, Tiwari S, Riazi S, Hu X, Ecelbarger CM (2008) Chronic candesartan alters expression and activity of NKCC2, NCC, and ENaC in the obese Zucker rat. Am J Physiol Renal Physiol 294:F1222–F1231CrossRefGoogle Scholar
  35. McGrath BP, Matthews PG, Louis W, Howes L, Whitworth JA, Kincaid-Smith PS, Fraser I, Scheinkestel C, MacDonald G, Rallings M (1990) Double-blind study of dilevalol and captopril, both in combination with hydrochlorothiazide, in patients with moderate to severe hypertension. J Cardiovasc Pharmacol 16:831–838PubMedCrossRefGoogle Scholar
  36. Miesel A, Müller H, Thermann M, Heidbreder M, Dominiak P, Raasch W (2010) Overfeeding-induced obesity in spontaneously hypertensive rats: an animal model of the human metabolic syndrome. Ann Nutr Metab 56:127–142PubMedCrossRefGoogle Scholar
  37. Mukawa H, Toki Y, Miyazaki Y, Matsui H, Okumura K, Ito T (2003) Angiotensin II type 2 receptor blockade partially negates antihypertrophic effects of type 1 receptor blockade on pressure-overload rat cardiac hypertrophy. Hypertens Res 26:89–95PubMedCrossRefGoogle Scholar
  38. Nahon JL (2006) The melanocortins and melanin-concentrating hormone in the central regulation of feeding behavior and energy homeostasis. C R Biol 329:623–638PubMedCrossRefGoogle Scholar
  39. Naruse M, Tanabe A, Sato A, Takagi S, Tsuchiya K, Imaki T, Takano K (2002) Aldosterone breakthrough during angiotensin II receptor antagonist therapy in stroke-prone spontaneously hypertensive rats. Hypertension 40:28–33PubMedCrossRefGoogle Scholar
  40. Nussdorfer GG, Mazzocchi G, Malendowicz LK (1986) Acute effects of alpha-MSH on the rat zona glomerulosa in vivo. Biochem Biophys Res Commun 141:1279–1284PubMedCrossRefGoogle Scholar
  41. Paull JR, Widdop RE (2001) Persistent cardiovascular effects of chronic renin-angiotensin system inhibition following withdrawal in adult spontaneously hypertensive rats. J Hypertens 19:1393–1402PubMedCrossRefGoogle Scholar
  42. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, San DiegoGoogle Scholar
  43. Prasad A, Quyyumi AA (2004) Renin-angiotensin system and angiotensin receptor blockers in the metabolic syndrome. Circulation 110:1507–1512PubMedCrossRefGoogle Scholar
  44. Raasch W, Wittmershaus C, Dendorfer A, Voges I, Pahlke F, Dodt C, Dominiak P, Jöhren O (2006) Angiotensin II inhibition reduces stress sensitivity of hypothalamo-pituitary-adrenal axis in SHR. Endocrinology in press:Google Scholar
  45. Sata N, Tanaka Y, Suzuki S, Kamimura R, Mifune H, Nakamura K, Miyahara K, Arima T (2003) Effectiveness of angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker on atrial natriuretic peptide. Circ J 67:1053–1058PubMedCrossRefGoogle Scholar
  46. Schupp M, Janke J, Clasen R, Unger T, Kintscher U (2004) Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation 109:2054–2057PubMedCrossRefGoogle Scholar
  47. Schupp M, Clemenz M, Gineste R, Witt H, Janke J, Helleboid S, Hennuyer N, Ruiz P, Unger T, Staels B, Kintscher U (2005) Molecular characterization of new selective peroxisome proliferator-activated receptor gamma modulators with angiotensin receptor blocking activity. Diabetes 54:3442–3452PubMedCrossRefGoogle Scholar
  48. Schupp M, Lee LD, Frost N, Umbreen S, Schmidt B, Unger T, Kintscher U (2006) Regulation of peroxisome proliferator-activated receptor gamma activity by losartan metabolites. Hypertension 47:586–589PubMedCrossRefGoogle Scholar
  49. Schwartz MW, Gelling RW (2002) Rats lighten up with MCH antagonist. Nat Med 8:779–781PubMedCrossRefGoogle Scholar
  50. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMedGoogle Scholar
  51. Sebekova K, Lill M, Boor P, Heidland A, Amann K (2009) Functional and partial morphological regression of established renal injury in the obese zucker rat by blockade of the renin-angiotensin system. Am J Nephrol 29:164–170PubMedCrossRefGoogle Scholar
  52. Seltzer A, Bregonzio C, Armando I, Baiardi G, Saavedra JM (2004) Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats. Brain Res 1028:9–18PubMedCrossRefGoogle Scholar
  53. Skurk T, Van HV, Blum WF, Hauner H (2005) Angiotensin II promotes leptin production in cultured human fat cells by an ERK1/2-dependent pathway. Obes Res 13:969–973PubMedCrossRefGoogle Scholar
  54. Tanabe A, Naruse M, Hara Y, Sato A, Tsuchiya K, Nishikawa T, Imaki T, Takano K (2004) Aldosterone antagonist facilitates the cardioprotective effects of angiotensin receptor blockers in hypertensive rats. J Hypertens 22:1017–1023PubMedCrossRefGoogle Scholar
  55. Welch WJ, Baumgartl H, Lubbers D, Wilcox CS (2003) Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int 63:202–208PubMedCrossRefGoogle Scholar
  56. Zorad S, Dou JT, Benicky J, Hutanu D, Tybitanclova K, Zhou J, Saavedra JM (2006) Long-term angiotensin II AT(1) receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARgamma. Eur J Pharmacol 552:112–122PubMedCrossRefGoogle Scholar
  57. Zucker TF, Zucker LM (1962) Hereditary obesity in the rat associated with high serum fat and cholesterol. Proc Soc Exp Biol Med 110:165–171Google Scholar
  58. Zucker TF, Zucker LM (1963) Fat accretion and growth in the rat. J Nutr 80:6–19PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Helge Müller-Fielitz
    • 1
  • Antonie Markert
    • 1
  • Christian Wittmershaus
    • 1
  • Friedrich Pahlke
    • 2
  • Olaf Jöhren
    • 1
  • Walter Raasch
    • 1
    Email author
  1. 1.Institute of Experimental and Clinical Pharmacology and ToxicologyUniversity of LübeckLübeckGermany
  2. 2.Institute of Medical Biometry and StatisticUniversity of Lübeck, University Clinic of Schleswig-Holstein, Campus LübeckLübeckGermany

Personalised recommendations