Skip to main content
Log in

Internalization of biotinylated compounds into cancer cells is promoted by a molecular Trojan horse based upon core streptavidin and clostridial C2 toxin

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The C2 toxin produced by Clostridium botulinum is a binary AB-type exotoxin composed of the enzyme subunit C2I and the binding/translocation moiety C2II. After proteolytic activation, C2IIa mediates the subsequent internalization of C2I into the cytosol of mammalian target cells. The N-terminal domain of C2I (C2IN) is necessary for C2IIa-dependent uptake, but lacks the enzyme domain that is responsible for cytotoxicity. In the present study, we generated a delivery system building on C2IN and a truncated core streptavidin (Stv13) with enhanced solubility for the C2IIa-dependent internalization of biotinylated cargo molecules into mammalian cells. C2IN–Stv13 fusion protein expressed in Escherichia coli was obtained in high yields and purity. The affinity-purified protein formed tetramers and a defined higher order species in solution as shown by gel filtration and retained its biotin-binding properties, however with an obvious reduction in affinity. Uptake of C2IN–Stv13 into the cytosol of HeLa and other cancer cell lines was observed by immunoblot analysis, which was corroborated by confocal microscopy. In addition, the fusion protein was not cytotoxic and did not inhibit cell proliferation as determined by MTS assay. Finally, we demonstrated the C2IN–Stv13/C2IIa-mediated uptake of biocytin–Alexa 488 as cargo into HeLa cells, underscoring the functionality of the generated transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322(6077):390–392

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Stiles BG (2008) Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells. Curr Med Chem 15(5):459–469

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Hofmann F, Olenik C, Just I, Aktories K (1998) The N-terminal part of the enzyme component (C2I) of the binary Clostridium botulinum C2 toxin interacts with the binding component C2II and functions as a carrier system for a Rho ADP-ribosylating C3-like fusion toxin. Infect Immun 66(4):1364–1369

    CAS  PubMed  Google Scholar 

  • Barth H, Blocker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275(25):18704–18711

    Article  CAS  PubMed  Google Scholar 

  • Chu TC, Twu KY, Ellington AD, Levy M (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res 34(10):e73

    Article  PubMed  Google Scholar 

  • Eckhardt M, Barth H, Blocker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 275(4):2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Fahrer J, Plunien R, Binder U, Langer T, Seliger H, Barth H (2010a) Genetically engineered clostridial C2 toxin as a novel delivery system for living mammalian cells. Bioconjug Chem 21(1):130–139

    Article  CAS  PubMed  Google Scholar 

  • Fahrer J, Rieger J, van Zandbergen G, Barth H (2010b) The C2–streptavidin delivery system promotes the uptake of biotinylated molecules in macrophages and T-leukemia cells. Biol Chem. doi:10.1515/BC.2010.132 (Epub ahead of print)

  • Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 278(34):32266–32274

    Article  CAS  PubMed  Google Scholar 

  • Heine K, Pust S, Enzenmuller S, Barth H (2008) ADP-ribosylation of actin by the Clostridium botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death. Infect Immun 76(10):4600–4608

    Article  CAS  PubMed  Google Scholar 

  • Helms B, Meijer EW (2006) Chemistry. Dendrimers at work. Science 313(5789):929–930

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Haug G, Hliscs M, Aktories K, Barth H (2006) Formation of a biologically active toxin complex of the binary Clostridium botulinum C2 toxin without cell membrane interaction. Biochemistry 45(44):13361–13368

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Pust S, Kroll C, Barth H (2009) Cyclophilin A facilitates translocation of the Clostridium botulinum C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Cell Microbiol 11(5):780–795

    Article  CAS  Google Scholar 

  • Kakimoto S, Hamada T, Komatsu Y, Takagi M, Tanabe T, Azuma H, Shinkai S, Nagasaki T (2009) The conjugation of diphtheria toxin T domain to poly(ethylenimine) based vectors for enhanced endosomal escape during gene transfection. Biomaterials 30(3):402–408

    Article  CAS  PubMed  Google Scholar 

  • Kilk K, Mahlapuu R, Soomets U, Langel U (2009) Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling. Toxicology 265(3):87–95

    Article  CAS  PubMed  Google Scholar 

  • Laitinen OH, Hytonen VP, Nordlund HR, Kulomaa MS (2006) Genetically engineered avidins and streptavidins. Cell Mol Life Sci 63(24):2992–3017

    Article  CAS  PubMed  Google Scholar 

  • Laitinen OH, Nordlund HR, Hytonen VP, Kulomaa MS (2007) Brave new (strept)avidins in biotechnology. Trends Biotechnol 25(6):269–277

    Article  CAS  PubMed  Google Scholar 

  • Moschos SA, Jones SW, Perry MM, Williams AE, Erjefalt JS, Turner JJ, Barnes PJ, Sproat BS, Gait MJ, Lindsay MA (2007) Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 18(5):1450–1459

    Article  CAS  PubMed  Google Scholar 

  • Murthy N, Robichaud JR, Tirrell DA, Stayton PS, Hoffman AS (1999) The design and synthesis of polymers for eukaryotic membrane disruption. J Control Release 61(1-2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Hagiyama T, Kojima T, Aoyanagi K, Takahashi C, Oda M, Sakaguchi Y, Oguma K, Sakurai J (2009) Binding and internalization of Clostridium botulinum C2 toxin. Infect Immun 77(11):5139–5148

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki T, Kawazu T, Tachibana T, Tamagaki S, Shinkai S (2005) Enhanced nuclear import and transfection efficiency of plasmid DNA using streptavidin-fused importin-beta. J Control Release 103(1):199–207

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2006) Molecular Trojan horses for blood–brain barrier drug delivery. Curr Opin Pharmacol 6(5):494–500

    Article  CAS  PubMed  Google Scholar 

  • Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237

    Article  CAS  PubMed  Google Scholar 

  • Pillai VC, Yesudas R, Shaik IH, Thekkumkara TJ, Bickel U, Srivenugopal KS, Mehvar R (2010) Delivery of NADPH-cytochrome P450 reductase antisense oligos using avidin–biotin approach. Bioconjug Chem 21(2):203–207

    Article  CAS  PubMed  Google Scholar 

  • Pust S, Hochmann H, Kaiser E, von Figura G, Heine K, Aktories K, Barth H (2007) A cell-permeable fusion toxin as a tool to study the consequences of actin-ADP-ribosylation caused by the Salmonella enterica virulence factor SpvB in intact cells. J Biol Chem 282(14):10272–10282

    Article  CAS  PubMed  Google Scholar 

  • Pust S, Barth H, Sandvig K (2010) Clostridium botulinum C2 toxin is internalized by clathrin- and Rho-dependent mechanisms. Cell Microbiol. doi:10.1111/j.1462-5822.2010.01512.x (Epub ahead of print)

  • Rinne J, Albarran B, Jylhava J, Ihalainen TO, Kankaanpaa P, Hytonen VP, Stayton PS, Kulomaa MS, Vihinen-Ranta M (2007) Internalization of novel non-viral vector TAT-streptavidin into human cells. BMC Biotechnol 7:1

    Article  PubMed  Google Scholar 

  • Sano T, Pandori MW, Chen X, Smith CL, Cantor CR (1995) Recombinant core streptavidins. A minimum-sized core streptavidin has enhanced structural stability and higher accessibility to biotinylated macromolecules. J Biol Chem 270(47):28204–28209

    Article  CAS  PubMed  Google Scholar 

  • Sano T, Vajda S, Smith CL, Cantor CR (1997) Engineering subunit association of multisubunit proteins: a dimeric streptavidin. Proc Natl Acad Sci USA 94(12):6153–6158

    Article  CAS  PubMed  Google Scholar 

  • Simpson LI (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251(3):1223–1228

    CAS  PubMed  Google Scholar 

  • Sorensen V, Zhen Y, Zakrzewska M, Haugsten EM, Walchli S, Nilsen T, Olsnes S, Wiedlocha A (2008) Phosphorylation of fibroblast growth factor (FGF) receptor 1 at Ser777 by p38 mitogen-activated protein kinase regulates translocation of exogenous FGF1 to the cytosol and nucleus. Mol Cell Biol 28(12):4129–4141

    Article  PubMed  Google Scholar 

  • Suzuki T, Wu D, Schlachetzki F, Li JY, Boado RJ, Pardridge WM (2004) Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J Nucl Med 45(10):1766–1775

    CAS  PubMed  Google Scholar 

  • Wagstaff KM, Jans DA (2006) Protein transduction: cell penetrating peptides and their therapeutic applications. Curr Med Chem 13(12):1371–1387

    Article  CAS  PubMed  Google Scholar 

  • Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK (2000) Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol 149(2):263–270

    Article  CAS  PubMed  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263(27):13739–13742

    CAS  PubMed  Google Scholar 

  • Wiedlocha A, Nilsen T, Wesche J, Sorensen V, Malecki J, Marcinkowska E, Olsnes S (2005) Phosphorylation-regulated nucleocytoplasmic trafficking of internalized fibroblast growth factor-1. Mol Biol Cell 16(2):794–810

    Article  CAS  PubMed  Google Scholar 

  • Wittrup A, Belting M (2009) Characterizing peptide-mediated DNA internalization in human cancer cells. Meth Mol Biol 480:101–112

    CAS  Google Scholar 

  • Xia CF, Boado RJ, Pardridge WM (2009) Antibody-mediated targeting of siRNA via the human insulin receptor using avidin–biotin technology. Mol Pharm 6(3):747–751

    Article  CAS  PubMed  Google Scholar 

  • Yoon DJ, Kwan BH, Chao FC, Nicolaides TP, Phillips JJ, Lam GY, Mason AB, Weiss WA, Kamei DT (2010) Intratumoral therapy of glioblastoma multiforme using genetically engineered transferrin for drug delivery. Cancer Res 70(11):4520–4527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Ulrich Pannicke, Institute for Transfusion Medicine, University of Ulm, Germany, for the kind gift of Jurkat T-cells, MOLT-3, and HepG2 cells. We would also like to thank Dr. Angelika Rück, ILM, University of Ulm, Germany, for providing access to the confocal microscope facility. We are indebted to Ulrike Binder for excellent technical assistance.

This work was funded by grant of the Medical Faculty, University of Ulm (Bausteinprojekt LSBN.0060 to J.F.)

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Barth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrer, J., Funk, J., Lillich, M. et al. Internalization of biotinylated compounds into cancer cells is promoted by a molecular Trojan horse based upon core streptavidin and clostridial C2 toxin. Naunyn-Schmied Arch Pharmacol 383, 263–273 (2011). https://doi.org/10.1007/s00210-010-0585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0585-7

Keywords

Navigation