Skip to main content

Advertisement

Log in

Upregulation of norepinephrine transporter function by prolonged exposure to nicotine in cultured bovine adrenal medullary cells

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Nicotine acts on nicotinic acetylcholine receptors in the adrenal medulla and brain, thereby stimulating the release of monoamines such as norepinephrine (NE). In the present study, we examined the effects of prolonged exposure to nicotine on NE transporter (NET) activity in cultured bovine adrenal medullary cells. Treatment of adrenal medullary cells with nicotine increased [3H]NE uptake in both a time- (1–5 days) and concentration-dependent (0.1–10 μM) manner. Kinetic analysis showed that nicotine induced an increase in the V max of [3H]NE uptake with little change in K m. This increase in NET activity was blocked by cycloheximide, an inhibitor of ribosomal protein synthesis, but not by actinomycin D, a DNA-dependent RNA polymerase inhibitor. [3H]NE uptake induced by nicotine was strongly inhibited by hexamethonium and mecamylamine but not by α-bungarotoxin, and was abolished by elimination of Ca2+ from the culture medium. KN-93, an inhibitor of Ca2+/calmodulin-dependent protein kinase II, attenuated not only nicotine-induced [3H]NE uptake but also 45Ca2+ influx in the cells. The present findings suggest that long-term exposure to nicotine increases NET activity through a Ca2+-dependent post-transcriptional process in the adrenal medulla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

DMSO:

Dimethyl sulfoxide

DMI:

Desipramine

Eagle’s MEM:

Eagle’s minimum essential medium

KRH:

Krebs–Ringer HEPES

KRP:

Krebs–Ringer phosphate

NE:

Norepinephrine

NET:

Norepinephrine transporter

nAChR:

Nicotinic acetylcholine receptor

References

  • Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16:73–93

    Article  CAS  PubMed  Google Scholar 

  • Axelrod J, Kopin IJ (1969) The uptake, storage, release and metabolism of noradrenaline in sympathetic nerves. Prog Brain Res 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • Baker EL, Blakely RD (1983) Noradrenaline and serotonin transporters. In: Bloom FE, DJ K (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 321–333

    Google Scholar 

  • Benowitz NL (1996) Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 36:597–613

    Article  CAS  PubMed  Google Scholar 

  • Bönisch H, Brüss M (1994) The noradrenaline transporter of the neuronal plasma membrane. Ann NY Acad Sci 733:193–202

    Article  PubMed  Google Scholar 

  • Ceña V, García AG, Montiel C, Sánchez-García P (1984) Uptake of [3H]-nicotine and [3H]-noradrenaline by cultured chromaffin cells. Br J Pharmacol 81(1):119–123

    PubMed  Google Scholar 

  • Clarke PB, Reuben M (1996) Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br J Pharmacol 117(4):595–606

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    Article  CAS  PubMed  Google Scholar 

  • Feldman RS, Meyer JS, Quenzer LF (1997) Principles of neuropharmacology. Sinauer, Sunderland, pp 324–344

    Google Scholar 

  • Fritz JD, Jayanthi LD, Thoreson MA, Blakely RD (1998) Cloning and chromosomal mapping of the murine norepinephrine transporter. J Neurochem 70(6):2241–2251

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Blair LA, Marshall J (2006) CaMKII-independent effects of KN93 and its inactive analog KN92: reversible inhibition of L-type calcium channels. Biochem Biophys Res Commun 345(4):1606–1610

    Article  CAS  PubMed  Google Scholar 

  • Govind AP, Vezina P, Green WN (2009) Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 78(7):756–765

    Article  CAS  PubMed  Google Scholar 

  • Habecker BA, Willison BD, Shi X, Woodward WR (2006) Chronic depolarization stimulates norepinephrine transporter expression via catecholamines. J Neurochem 97(4):1044–1051

    Article  CAS  PubMed  Google Scholar 

  • Hara K, Yanagihara N, Minami K, Ueno S, Toyohira Y, Sata T, Kawamura M, Brüss M, Bönisch H, Shigematsu A, Izumi F (1998) Ketamine interacts with the noradrenaline transporter at a site partly overlapping the desipramine binding site. Naunyn-Schmiedeberg’s Arch Pharmacol 358(3):328–333

    Article  CAS  Google Scholar 

  • Hart C, Ksir C (1996) Nicotine effects on dopamine clearance in rat nucleus accumbens. J Neurochem 66(1):216–221

    Article  CAS  PubMed  Google Scholar 

  • Izenwasser S, Cox BM (1992) Inhibition of dopamine uptake by cocaine and nicotine: tolerance to chronic treatments. Brain Res 573(1):119–125

    Article  CAS  PubMed  Google Scholar 

  • Izenwasser S, Jacocks HM, Rosenberger JG, Cox BM (1991) Nicotine indirectly inhibits [3H]dopamine uptake at concentrations that do not directly promote [3H]dopamine release in rat striatum. J Neurochem 56(2):603–610

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom J, Anand R, Gerzanich V, Peng X, Wang F, Wells G (1996) Structure and function of neuronal nicotinic acetylcholine receptors. Prog Brain Res 109:125–137

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Björklund A (1983) Dopamine and norepinephrine-containing neuron systems; their anatomy in the rat brain. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, pp 229–255

    Google Scholar 

  • Lingen B, Brüss M, Bönisch H (1994) Cloning and expression of the bovine sodium- and chloride-dependent noradrenaline transporter. FEBS Lett 342(3):235–238

    Article  CAS  PubMed  Google Scholar 

  • Mandela P, Ordway GA (2006) The norepinephrine transporter and its regulation. J Neurochem 97(2):310–333

    Article  CAS  PubMed  Google Scholar 

  • Michael-Hepp J, Blüm B, Bönisch H (1992) Characterization of the [3H]-desipramine binding site of the bovine adrenomedullary plasma membrane. Naunyn-Schmiedeberg’s Arch Pharmacol 346(2):203–207

    Article  CAS  Google Scholar 

  • Middleton LS, Cass WA, Dwoskin LP (2004) Nicotinic receptor modulation of dopamine transporter function in rat striatum and medial prefrontal cortex. J Pharmacol Exp Ther 308(1):367–377

    Article  CAS  PubMed  Google Scholar 

  • Osterhout CA, Sterling CR, Chikaraishi DM, Tank AW (2005) Induction of tyrosine hydroxylase in the locus coeruleus of transgenic mice in response to stress or nicotine treatment: lack of activation of tyrosine hydroxylase promoter activity. J Neurochem 94(3):731–741

    Article  CAS  PubMed  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350(6316):350–354

    Article  CAS  PubMed  Google Scholar 

  • Sacaan AI, Dunlop JL, Lloyd GK (1995) Pharmacological characterization of neuronal acetylcholine gated ion channel receptor-mediated hippocampal norepinephrine and striatal dopamine release from rat brain slices. J Pharmacol Exp Ther 274(1):224–230

    CAS  PubMed  Google Scholar 

  • Sala F, Nistri A, Criado M (2008) Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol (Oxf) 192(2):203–212

    Article  CAS  Google Scholar 

  • Shimokawa H, Rashid M (2007) Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol Sci 28(6):296–302

    Article  CAS  PubMed  Google Scholar 

  • Summers KL, Giacobini E (1995) Effects of local and repeated systemic administration of (−)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 20(6):753–759

    Article  CAS  PubMed  Google Scholar 

  • Sung U, Blakely RD (2007) Calcium-dependent interactions of the human norepinephrine transporter with syntaxin 1A. Mol Cell Neurosci 34(2):251–260

    Article  CAS  PubMed  Google Scholar 

  • Viljoen M, Panzer A (2007) The central noradrenergic system: an overview. Afr J Psychiatry (Johannesbg) 10(3):135–141

    CAS  Google Scholar 

  • Vleeming W, Rambali B, Opperhuizen A (2002) The role of nitric oxide in cigarette smoking and nicotine addiction. Nicotine Tob Res 4(3):341–348

    Article  CAS  PubMed  Google Scholar 

  • Wada A, Takara H, Izumi F, Kobayashi H, Yanagihara N (1985) Influx of 22Na through acetylcholine receptor-associated Na channels: relationship between 22Na influx, 45Ca influx and secretion of catecholamines in cultured bovine adrenal medulla cells. Neuroscience 15(1):283–292

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara N, Isosaki M, Ohuchi T, Oka M (1979) Muscarinic receptor-mediated increase in cyclic GMP level in isolated bovine adrenal medullary cells. FEBS Lett 105:296–298

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara N, Oishi Y, Yamamoto H, Tsutsui M, Kondoh J, Sugiura T, Miyamoto E, Izumi F (1996) Phosphorylation of chromogranin A and catecholamine secretion stimulated by elevation of intracellular Ca2+ in cultured bovine adrenal medullary cells. J Biol Chem 271(29):17463–17468

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura R, Yanagihara N, Hara K, Nakamura J, Toyohira Y, Ueno S, Izumi F (2001) Dual phases of functional change in norepinephrine transporter in cultured bovine adrenal medullary cells by long-term treatment with clozapine. J Neurochem 77(4):1018–1026

    Article  CAS  PubMed  Google Scholar 

  • Zahniser NR, Doolen S (2001) Chronic and acute regulation of Na+/Cl -dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 92(1):21–55

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Apparsundaram S, Dwoskin LP (2009) Nicotinic receptor activation increases [3H]dopamine uptake and cell surface expression of dopamine transporters in rat prefrontal cortex. J Pharmacol Exp Ther 328(3):931–939

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported, in part, by a grant from the Smoking Research Foundation, Grant-in-Aids (20611020 and 20590129) for Scientific Research (C) from the Japan Society for the Promotion of Science, and a grant from the University of Occupational and Environmental Health for Advanced Research. We are grateful to Ms. Satomi Sonoda and Ms. Mayumi Yamashita for her experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Yanagihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, H., Toyohira, Y., Ueno, S. et al. Upregulation of norepinephrine transporter function by prolonged exposure to nicotine in cultured bovine adrenal medullary cells. Naunyn-Schmied Arch Pharmacol 382, 235–243 (2010). https://doi.org/10.1007/s00210-010-0540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0540-7

Keywords

Navigation