Skip to main content
Log in

Establishment of recombinant cannabinoid receptor assays and characterization of several natural and synthetic ligands

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cannabinoid receptors (CBR) are important drug targets for the treatment of various inflammatory, metabolic and neurological diseases. Therefore, sensitive test systems for the assessment of ligands are needed. In this study, a steady-state GTPase assay for human CBR subtypes 1 and 2 was developed to characterize the pharmacological property of ligands at a very proximal point of the signal transduction cascade. Establishing these in vitro test sytems, we studied cell or tissue membranes heterogenously or endogenously expressing CBR, such as CBR-infected Human Embryonic Kidney (HEK) 293 cells, rat cerebellum and spleen cells. The lack of effects in the GTPase assay and in [35S]GTPγS binding experiments in these expression system, directed us to use Spodoptera frugiperda (Sf9) cells. Co-expressing CBR, different Gα-subunits, Gβγ heterodimer, and RGS (Regulator of G-protein signaling)-proteins in Sf9 cell membranes greatly improved the sensitivity of the assay, with highest GTPase activation in the CBR + Gαi2 + Gβ1γ2 + RGS4 system. We examined exogenous and endogenous standard ligands as well as secondary metabolites as Δ9-tetrahydrocannabinol (Δ9-THC), dodeca-2E,4E-dienoic acid isobutylamide, an alkylamide from Echinacea purpurea, and an E. purpurea hexane extract according their agonistic and antagonistic properties. The suitability of the assay for screening procedures was also proven by detecting the activity of Δ9-THC in a matrix of other less active compounds (Δ9-THC-free Cannabis sativa extract). In conclusion, we have developed highly sensitive test systems for the analysis of CBR ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Breivogel C (2006) Cannabinoid receptor binding to membrane homogenates and cannabinoid-stimulated [35S]GTPγS binding to membrane homogenates or intact cultured cells, in Methods in Molecular Medicine: Marijuana and Cannabinoid Research: Methods and Protocols; ed. Onaivi ES, Humana, Totowa, NJ

  • Burchett SA (2000) Regulators of G protein signaling: a bestiary of modular protein binding domains. J Neurochem 75:1335–1351

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Finazzi-Agro A, Bernardi G, Maccarrone M (2007) The endocannabinoid system in targeting inflammatory neurodegenerative diseases. Trends Pharmacol Sci 28:180–187

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Hitchcock SA (2007) Targeting cannabinoid agonists for inflammatory and neuropathic pain. Expert Opin Investig Drugs 16:951–965

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Cosenza M, Gifford AN, Gatley SJ, Pyatt B, Liu Q, Makriyannis A, Volkow ND (2000) Locomotor activity and occupancy of brain cannabinoid CB1 receptors by the antagonist/inverse agonist AM281. Synapse 38:477–482

    Article  CAS  PubMed  Google Scholar 

  • De Petrocellis L, Cascio MG, Di Marzo V (2004) The endocannabinoid system: a general view and latest additions. Br J Pharmacol 141:765–774

    Article  PubMed  Google Scholar 

  • Di Marzo V, Bifulco M, De Petrocellis L (2004) The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 3:771–784

    Article  PubMed  Google Scholar 

  • Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 48:443–450

    CAS  PubMed  Google Scholar 

  • Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008) β-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 105:9099–9104

    Article  CAS  PubMed  Google Scholar 

  • Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, Kobilka BK (1997) Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 72:2587–2590

    Google Scholar 

  • Gierschik P, Sidiropoulos D, Steisslinger M, Jakobs KH (1989) Na+ regulation of formyl peptide receptor-mediated signal transduction in HL 60 cells. Evidence that the cation prevents activation of the G-protein by unoccupied receptors. Eur J Pharmacol 172:481–492

    Article  CAS  PubMed  Google Scholar 

  • Gierschik P, Moghtader R, Straub C, Dieterich K, Jakobs KH (1991) Signal amplification in HL-60 granulocytes. Evidence that the chemotactic peptide receptor catalytically activates guanine-nucleotide-binding regulatory proteins in native plasma membranes. Eur J Pharmacol 197:725–732

    CAS  Google Scholar 

  • Griffin G, Atkinson PJ, Showalter VM, Martin BR, Abood ME (1998) Evaluation of cannabinoid receptor agonists and antagonists using the guanosine-5′-O-(3-[35S]thio)-triphosphate binding assay in rat cerebellar membranes. J Pharmacol Exp Ther 285:553–560

    CAS  PubMed  Google Scholar 

  • Heilmann J (2007) Wirkstoffe auf der Basis von biologisch aktiven Naturstoffen. Chemie in unserer Zeit 41:376–389

    Article  CAS  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  CAS  PubMed  Google Scholar 

  • Kleemann P, Papa D, Vigil-Cruz S, Seifert R (2008) Functional reconstitution of the human chemokine receptor CXCR4 with Gi/Go-proteins in Sf9 insect cells. Naunyn Schmiedeberg’s Arch Pharmacol 378:261–274

    Article  CAS  Google Scholar 

  • Lan R, Gatley J, Lu Q, Fan P, Fernando SR, Volkow ND, Pertwee R, Makriyannis A (1999a) Design and synthesis of the CB1 selective cannabinoid antagonist AM281: a potential human SPECT ligand. AAPS Pharm Sci 1:E4

    Article  CAS  Google Scholar 

  • Lan R, Liu Q, Fan P, Lin S, Fernando SR, McCallion D, Pertwee R, Makriyannis A (1999b) Structure–activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J Med Chem 42:769–776

    Article  CAS  PubMed  Google Scholar 

  • Leterrier C, Bonnard D, Carrel D, Rossier J, Lenkei Z (2004) Constitutive endocytic cycle of the CB1 cannabinoid receptor. J Biol Chem 279:36013–36021

    Article  CAS  PubMed  Google Scholar 

  • Lever IJ, Rice AS (2007) Cannabinoids and pain, in Handb Exp Pharmacol. Springer, Berlin, pp 265–306

    Google Scholar 

  • Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutiérrez SO, van der Stelt M, López-Rodriguez ML, Casanova E, Schütz G, Zieglgänsberger W, Di Marzo V, Behl C, Lutz B (2003) CB1 cannabinoid receptors and on-demand defence against exocitotoxicity. Science 302:84–88

    Article  CAS  PubMed  Google Scholar 

  • McPartland JM, Glass M (2003) Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates. Gene 312:297–303

    Article  CAS  PubMed  Google Scholar 

  • McPartland J, Di Marzo V, De Petrocellis L, Mercer A, Glass M (2001) Cannabinoid receptors are absent in insects. J J Comp Neurol 436:423–429

    Article  CAS  Google Scholar 

  • McPartland JM, Glass M, Pertwee RG (2007) Meta-analysis of cannabinoid binding affinity and receptor distribution: interspecies differences. Br J Pharmacol 152:583–592

    Article  CAS  PubMed  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  CAS  PubMed  Google Scholar 

  • Navarro HA, Howard JL, Pollard GT, Carroll FI (2009) Positive allosteric modulation of the human cannabinoid (CB1) receptor by RTI-371, a selective inhibitor of the dopamine transporter. Br J Pharmacol 156:1178–1184

    Article  CAS  PubMed  Google Scholar 

  • Nickl K, Gardner EE, Geiger S, Heilmann J, Seifert R (2008) Differential coupling of the human cannabinoid receptors hCB1R and hCB2R to the G-protein Gαi2β1γ2. Neurosci Lett 447:68–72

    Article  CAS  PubMed  Google Scholar 

  • Offermanns S (2003) G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol 83:101–130

    Article  CAS  PubMed  Google Scholar 

  • Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531

    Article  CAS  PubMed  Google Scholar 

  • Pei G, Samama P, Lohse M, Wang M, Codina J, Lefkowitz RJ (1994) A constitutively active mutant beta 2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc Natl Acad Sci USA 91:2699–2702

    Article  CAS  PubMed  Google Scholar 

  • Perry NB, van Klink JW, Burgess EJ, Parmenter GA (1997) Alkamide levels in Echinacea purpurea: a rapid analytical method revealing differences among roots, rhizomes, stems, leaves and flowers. Planta Med 63:58–62

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664

    CAS  PubMed  Google Scholar 

  • Pertwee RG (2008a) Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol 13:147–159

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG (2008b) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    Article  CAS  PubMed  Google Scholar 

  • Raduner S, Majewska A, Chen JZ, Xie XQ, Hamon J, Faller B, Altmann KH, Gertsch JH (2006) Alkylamides from Echinacea are a new class cannabinomimetics. Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J Biol Chem 281:14192–14206

    Article  CAS  PubMed  Google Scholar 

  • Ross EM, Wilkie TM (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827

    Article  CAS  PubMed  Google Scholar 

  • Ross RA, Brockie HC, Stevenson LA, Murphy VL, Templeton F, Makriyannis A, Pertwee RG (1999) Agonist-inverse agonist characterization at CB1 and CB2 receptors of L759633, L759656, and AM630. Br J Pharmacol 126:665–672

    Article  CAS  PubMed  Google Scholar 

  • Schneider EH, Seifert R (2009) Histamine H4 receptor-RGS fusion proteins expressed in Sf9 insect cells: a sensitive and reliable approach for the functional characterization of histamine H4 receptor ligands. Biochem Pharmacol 78:607–616

    Article  CAS  PubMed  Google Scholar 

  • Schneider EH, Schnell D, Papa D, Seifert R (2009) High constitutive activity and a G-protein-independent high-affinity state of the human histamine H(4)-receptor. Biochemistry 48:1424–1438

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Dove S (2009) Functional selectivity of GPCR ligand stereoisomers: new pharmacological opportunities. Mol Pharmacol 75:13–18

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Wenzel-Seifert K (2001) Unmasking different constitutive activity of four chemoattractant receptors using Na+ as universal stabilizer of the inactive (R) state. Recept Channels 7:357–369

    CAS  PubMed  Google Scholar 

  • Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedeberg’s Arch Pharmacol 366:381–416

    Article  CAS  Google Scholar 

  • Seifert R, Lee TW, Lam VT, Kobilka BK (1998) Reconstitution of beta2-adrenoceptor-GTP-binding-protein interaction in Sf9 cells—high coupling efficiency in a beta2-adrenoceptor-G(s alpha) fusion protein. Eur J Biochem 255:369–382

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Gether U, Wenzel-Seifert K, Kobilka BK (1999a) Effects of guanine, inosine, and xanthine nucleotides on β2-adrenergic receptor/Gs interactions: evidence for multiple conformations. Mol Pharmacol 56:348–358

    CAS  PubMed  Google Scholar 

  • Seifert R, Wenzel-Seifert K, Kobilka B (1999b) GPCR–Ga fusion proteins:molecular analysis of receptor–G-protein coupling. Trends Pharmacol Sci 20:383–389

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Wenzel-Seifert K, Gether U, Kobilka BK (2001) Functional differences between full and parial agonists: evidence for ligand-specific receptor conformations. J Pharmacol Exp Ther 297:1218–1226

    CAS  PubMed  Google Scholar 

  • Silvestri R, Cascio MG, La Regina G, Piscitelli F, Lavecchia A, Brizzi A, Pasquini S, Botta M, Novellino E, Di Marzo V, Corelli F (2008) Synthesis, cannabinoid receptor affinity, and molecular modeling studies of substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. J Med Chem 51:1560–1576

    Article  CAS  PubMed  Google Scholar 

  • Skaper SD, Buriani A, Dal Toso R, Petrelli L, Romanello S, Facci L, Leon A (1999) The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci 93:3984–3989

    Article  Google Scholar 

  • Song ZH, Slowey CA, Hurst DP, Reggio PH (1999) The difference between the CB1 and CB2 cannabinoid receptors at position 5.46 is crucial for the selectivity of WIN 55, 212–2 for CB2. Mol Pharmacol 56:834–840

    CAS  PubMed  Google Scholar 

  • Thomas BF, Gilliam AF, Burch DF, Roche MJ, Seltzman HH (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 285:285–292

    CAS  PubMed  Google Scholar 

  • Walseth TF, Johnson RA (1979) The enzymatic preparation of [α-32P]nucleoside triphosphates, cyclic [32P]AMP, and cyclic [32P]GMP. Biochim Biophys Acta 562:11–31

    CAS  PubMed  Google Scholar 

  • Wenzel-Seifert K, Seifert R (2000) Molecular analysis of β2-adrenoreceptor coupling to Gs-, Gi, and Gq-proteins. Mol Pharmacol 58:954–966

    CAS  PubMed  Google Scholar 

  • Wenzel-Seifert K, Seifert R (2003) Critical role of N-terminal N-glycosylation for proper folding of the human formyl peptide receptor. Biochem Biophys Res Commun 301:693–698

    Article  CAS  PubMed  Google Scholar 

  • Wenzel-Seifert K, Hurt CM, Seifert R (1998) High constitutive activity of the human formyl peptide receptor. J Biol Chem 273:24181–24189

    Article  CAS  PubMed  Google Scholar 

  • Wenzel-Seifert K, Arthur JM, Liu HY, Seifert R (1999) Quantitative analysis of formyl peptide receptor coupling to Giα1, Giα2, and Giα3. J Biol Chem 274:33259–33266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank G. Wilberg (Department of Pharmacology and Toxicology, University of Regensburg) and K. Fisch (Department of Pharmaceutical Biology, University of Regensburg) for technical assistance; Dr. K. Wenzel-Seifert (Department of Pharmacology and Toxicology, University of Regensburg) for her professional support concerning cell culture, transfection, and cell imaging; Dr. D. Schnell (Department of Pharmacology and Toxicology, University of Regensburg) for his help to synthesize [γ-32P]GTP and O. Bosch for his friendly support with the animal studies. Thanks are also due to Professor Dr. J. Schlossmann (Department of Pharmacology and Toxicology, University of Regensburg) for providing infrastructure and the reviewers for their constructive critique. Research support given by the Deutsche Forschungsgemeinschaft (Graduiertenkolleg 760 “Medicinal Chemistry”, University of Regensburg) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Heilmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, S., Nickl, K., Schneider, E.H. et al. Establishment of recombinant cannabinoid receptor assays and characterization of several natural and synthetic ligands. Naunyn-Schmied Arch Pharmacol 382, 177–191 (2010). https://doi.org/10.1007/s00210-010-0534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0534-5

Keywords

Navigation