Skip to main content
Log in

Phosphodiesterases do not limit β1-adrenoceptor-mediated sinoatrial tachycardia: evidence with PDE3 and PDE4 in rabbits and PDE1–5 in rats

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The mammalian heart expresses at least five phosphodiesterases (PDE1–5). Catecholamines produce surges of inotropically relevant cAMP through β1-adrenoceptor stimulation. cAMP is mainly hydrolysed by PDE3 and/or PDE4 thereby blunting contractility. Basal sinoatrial beating rate in mouse, rat, piglet and rabbit sinoatrial cells is reduced by PDE3 and/or PDE4 through hydrolysis of cAMP. However, in rodents, the tachycardia elicited by catecholamines through production of cAMP by β-adrenoceptor activation is not controlled by PDE3 and PDE4, despite a blunting effect of PDE3 or/and PDE4 on basal sinoatrial beating, but it is unknown whether PDE3 limits catecholamine-evoked tachycardia in the rabbit. Since rabbit sinoatrial cells are an important model for pacemaker research, we investigated whether the positive chronotropic effects of (−)-noradrenaline on spontaneously beating right atria of the rabbit are potentiated by inhibition of PDE3 with cilostamide (300 nM). We also studied the sinoatrial effects of the PDE4 inhibitor rolipram (10 μM) and its influence on the responses to (−)-noradrenaline. For comparison, we investigated the influence of cilostamide and rolipram on the positive inotropic responses to (−)-noradrenaline on rabbit left atria and right ventricular papillary muscles. Cilostamide and concurrent cilostamide + rolipram, but not rolipram alone, increased sinoatrial rate by 15% and 31% of the effect of (−)-isoprenaline (200 µM) but the PDE inhibitors did not significantly change the chronotropic potency of (−)-noradrenaline. In contrast in papillary muscle, the positive inotropic effects of (−)-noradrenaline were potentiated 2.4-, 2.6- and 44-fold by cilostamide, rolipram and concurrent cilostamide + rolipram, respectively. In left atrium, the positive inotropic effects of (−)-noradrenaline were marginally potentiated by cilostamide, as well as potentiated 2.7- and 32-fold by rolipram and by concurrent cilostamide and rolipram respectively. To compare the influence of PDE1–5 on basal sinoatrial rate and (−)-noradrenaline-evoked tachycardia, we investigated on rat right atria the effects of selective inhibitors. The PDE4 inhibitor rolipram and non-selective inhibitor isobutyl-methylxanthine caused tachycardia with –logEC50s of 7.2 and 5.0 and E max of 18% and 102% of (−)-isoprenaline, respectively. Rolipram did not change the chronotropic potency of (−)-noradrenaline. At high concentrations (10–30 µM), the PDE1, PDE3 and PDE5 inhibitors 8-methoxymethyl-3-isobutyl-1-methylxanthine, cilostamide and sildenafil, respectively, caused marginal tachycardia but did not significantly change the chronotropic potency of (−)-noradrenaline. The PDE2-selective inhibitor erythro-9-[2-hydroxy-3-nonyl]adenine caused marginal bradycardia at 30 µM and tended to reduce the chronotropic potency of (−)-noradrenaline. Rabbit PDE3 reduces basal sinoatrial rate. Although PDE4 only marginally reduces rate, under conditions of PDE3 inhibition, it further reduces sinoatrial rate. Both PDE3 and PDE4 control atrial and ventricular positive inotropic effects of (−)-noradrenaline. In contrast, neither PDE3 nor PDE4 limit the sinoatrial tachycardia induced by (−)-noradrenaline. In the rat, only PDE4, but not PDE1, PDE2, PDE3 and PDE5, reduces basal sinoatrial rate. None of the five rat PDEs limits the (−)-noradrenaline-evoked tachycardia. Taken together, these results confirm and expand evidence for our proposal that the cAMP-compartment modulating basal sinoatrial rate, controlled by PDE3 and/or PDE4, is different from the PDE-resistant cAMP compartment involved in β1-adrenoceptor-mediated sinoatrial tachycardia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  • Boganov KY, Vinogradova TM, Lakatta EG (2001) Sinoatrial nodal cell ryanodine receptor and Na+–Ca2+ exchanger: molecular partners in pacemaker regulation. Circ Res 88:1254–1258

    Article  Google Scholar 

  • Borlaug BA, Melenovsky V, Marhin T, Fitzgerald P, Kass DA (2005) Sildenafil inhibits β-adrenergic-stimulated cardiac contractility in humans. Circulation 112:2642–2649

    Article  CAS  PubMed  Google Scholar 

  • Christ T, Engel A, Ravens U, Kaumann AJ (2006a) Cilostamide potentiates more the positive inotropic effects of (-)-adrenaline through β2-adrenoceptors than the effects of (-)-noradrenaline through β1-adrenoceptors in human atrial myocardium. Naunyn Schmiedeberg’s Arch Pharmacol 374:249–253

    Article  CAS  Google Scholar 

  • Christ T, Molenaar P, Galindo-Tovar A, Ravens U, Kaumann AJ (2006b) Contractile response through Gs-coupled receptors are reduced by phosphodiesterase3 activity in human isolated myocardium. Biochem Soc Focusing Meeting. Compartimentalization of cAMP signals. Cambridge UK, 29–30 March: P014.

  • Christ T, Galindo-Tovar A, Thoms M, Ravens U, Kaumann AJ (2009) Phosphodiesterases3- and 4-controlled compartments, activated by β1- and β2-adrenoceptors, differ for L-type Ca2+ current and inotropy in rat heart. Br J Pharmacol 156:62–83

    Article  CAS  PubMed  Google Scholar 

  • Corbin JD, Francis SH (1999) Cyclic GMP phosphodiesterase-5: target of sildenafil. J Biol Chem 274:13729–13732

    Article  CAS  PubMed  Google Scholar 

  • Daugan A, Grondin P, Ruault C, Monnier L, de Gouville A-C, Coste H, Kirilovsky J, Hyafil F, Labaudinire R (2003) The discovery of tadalafil: a novel and highly selective PDE5 inhibitor. 1: 5, 6, 11, 11a-tetrahydro-1H imidazo[1′, 5′:1, 6]pyrido[3, 4-b]indole-1, 3(2H)-dione analogues. J Med Chem 46:4525–4532

    Article  CAS  PubMed  Google Scholar 

  • Di Francesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by cyclic AMP. Nature 351:145–147

    Article  CAS  Google Scholar 

  • Dunkern TR, Hatzelmann A (2007) Characterization of inhibitors of phosphodiesterase 1C on a human cellular system. FEBS J 274:4812–4824

    Article  CAS  PubMed  Google Scholar 

  • Fischmeister R, Castro LRV, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signalling in the heart. The role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Tovar A, Kaumann AJ (2008) Phosphodiesterase-4 blunts inotropism and arrhythmias but not sinoatrial tachycardia of (-)-adrenaline mediated through mouse cardiac β-adrenoceptors. Br J Pharmacol 153:710–720

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Tovar A, Vargas ML, Escudero E, Kaumann AJ (2009a) Ontogenic changes of the control by phosphodiesterases-3 and -4 of 5-HT responses in porcine heart and relevance to human atrial 5-HT4 receptors. Br J Pharmacol 156:237–249

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Tovar A, Vargas ML, Kaumann AJ (2009b) Phosphodiesterases PDE3 and PDE4 jointly control the inotropic effects but not chronotropic effects of (-)-CGP12177 despite PDE-evoked sinoatrial bradycardia in rat atrium. Naunyn-Schmiedeberg’s Arch Pharmacol 379:379–384

    Article  CAS  Google Scholar 

  • Gettys TW, Blackmore PF, Redmon JB, Beebe SJ, Corbin JD (1987) Short-term feedback regulation of cAMP by accelerated degradation in rat tissues. J Biol Chem 262:333–339

    CAS  PubMed  Google Scholar 

  • Gille E, Lemoine H, Ehle B, Kaumann AJ (1985) The affinity of (-)-propranolol for β1- and β2-adrenoceptors of human heart. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (-)-noradrenaline and (-)-adrenaline. Naunyn Schmiedeberg’s Arch Pharmacol 331:60–70

    Article  CAS  Google Scholar 

  • Heubach JF, Rau T, Eschenhagen T, Ravens U, Kaumann AJ (2002) Physiological antagonism between ventricular β1-adrenoceptors and α1-adrenoceptors but no evidence for β2- and β3-adrenoceptor function in murine heart. Br J Pharmacol 136:217–229

    Article  CAS  PubMed  Google Scholar 

  • Kass DA, Champion HC, Beavo JA (2007) Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res 101:1084–1095

    Article  CAS  PubMed  Google Scholar 

  • Katano Y, Endoh M (1992) Effects of a cardiotonic quinolinone derivative Y-20487 on the positive inotropic action and cyclic AMP-accumulation in rat ventricular myocardium: comparison with rolipram, Ro 20–1724, milrinone, and isobutylmethylxanthine. Cardiovasc Pharmacol 20:715–722

    Article  CAS  Google Scholar 

  • Kaumann AJ, Semmler AL, Molenaar P (2007) The effects of both noradrenaline and CGP12177, mediated through human β1-adrenoceptors, are reduced by PDE3 in human atrium but PDE4 in CHO cells. Naunyn Schmiedeberg’s Arch Pharmacol 375:123–131

    Article  CAS  Google Scholar 

  • Lakatta EG, DiFrancesco D (2009) What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol 47:157–170

    Article  CAS  PubMed  Google Scholar 

  • Lemoine H, Kaumann AJ (1992) Regional differences between β1- and β2-adrenoceptors mediated functions in feline heart. A beta 2-adrenoceptor-mediated positive inotropic effect possibly unrelated to cyclic AMP. Naunyn Schmiedebergs Arch Pharmacol 344:56–69

    Google Scholar 

  • Loughney K, Hill TR, Florio VA, Uher L, Rosman GS, Wolda SL, Jones BA, Howard ML, McAllister-Lucas LM, Sonnenburg WK, Francis SH, Corbin JD, Beavo JA, Ferguson K (1998) Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3’, 5’-cyclic nucleotide phosphodiesterase. Gene 216:139–147

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie SJ, Baillie GS, MacPhee I, MacKenzie C, Seamons R, McSorley T, Millen J, Beard MB, van Heeke G, Houslay MD (2002) Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in upstream conserved region 1 (UCR1). Br J Pharmacol 136:421–433

    Article  CAS  PubMed  Google Scholar 

  • Maltsev VA, Lakatta EG (2009) Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confer robust and flexible pacemaker function in a novel pacemaker cell model. Am J Physiol 296:H594–H615

    CAS  Google Scholar 

  • Méry PF, Belhassen L, Pecker F, Fischmeister R (1993) Nitric oxide regulates cardiac Ca2+ current—involvement of cGMP-inhibited and cGMP-stimulated phoshodiesterases through guanylyl cyclase activation. J Biol Chem 268:26286–26295

    PubMed  Google Scholar 

  • Ono K, Trautwein W (1991) Potentiation by cyclic GMP of β-adrenergic effects of Ca2+ current in guinea-pig ventricular myocytes. J Physiol 443:387–404

    CAS  PubMed  Google Scholar 

  • Osadchii OE (2007) Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease. Cardiovasc Drugs Ther 21:171–194

    Article  CAS  PubMed  Google Scholar 

  • Podzuweit T, Nennstiel P, Moller A (1995) An isoenzyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell Signal 7:733–738

    Article  CAS  PubMed  Google Scholar 

  • Pomara G, Morelli G, Pomara S, Taddei S, Ghiadoni L, Dinelli N, Travaglini F, Dicuio M, Mandaini N, Salvetti A, Selli C (2004) Cardiovascular parameter changes in patients with erectile dysfunction using Pde-5 inhibitors: a study with sildenafil and vardenafil. J Androl 25:625–629

    CAS  PubMed  Google Scholar 

  • Senzaki H, Smith CJ, Juang GJ, Isoda T, Mayer SP, Ohler A, Paolocci N, Tomaselli GF, Hare JM, Kass DA (2001) Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signalling in vivo and is down-regulated in heart failure. FASEB J 15:1718–1726

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, van Amsterdam RGM, de Boer J, ten Berge RE, Nicholson CD, Zaagsma J (1991) The presence of five cyclic nucleotide phosphodiesterase isoenzyme activities in bovine tracheal smooth muscle and thefunctional effects of selective inhibitors. Br J Pharmacol 104:471–477

    CAS  PubMed  Google Scholar 

  • Shakur Y, Fong M, Hensley J, Cone J, Movsesian MA, Kambayashi J, Yoshitake M, Liu Y (2002) Comparison of the effects of cilostazol and milrinone on cAMP-PDE activity, intracellular cAMP and calcium in the heart. Cardiovasc Drugs Ther 16:417–426

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Vasta V, Degerman E, Belfrage P, Manganiello VC (1991) Hormone sensitive cyclic GMP-inhibited cylic AMP phosphodiesterases in rat adipocytes. J Biol Chem 266:13385–13390

    CAS  PubMed  Google Scholar 

  • Stacey P, Rulten S, Dapling A, Phillips SC (1998) Molecular cloning and expression of human cGMP-binding cGMP-specific phosphodiesterase (PDE5). Biochem Biophys Res Commun 247:249–254

    Article  CAS  PubMed  Google Scholar 

  • Sudo T, Tachibana K, Toga K, Tochizawa S, Inoue Y, Kimura Y, Hidaka H (2000) Potent effects of novel anti-platelet aggregatory cilostamide analogues on recombinant cyclic nucleotide phosphodiesterase isozyme activity. Biochem Pharmacol 59:347–356

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Satoh Y, Shiina H, Takahara A, Yoneyama M, Hashimoto K (2001) Cardiac electrophsiologic and hemodynamic effects of sildenafil, a PDE5 inhibitor, in anesthetized dogs. J Cardiovasc Pharmacol 38:940–946

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Takeuchi N, Saegusa Y, Sugita M, Hashimoto K (2002) Molecular mechanism of cardiostimulatory effects of sildenafil. Jpn J Pharmacol 88:362–364

    Article  CAS  PubMed  Google Scholar 

  • Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M, Mergia E, Montrose DC, ISO T, Aufiero K, Zaccolo M, Dostmann WR, Smith CJ, Kass DA (2005) cGMP catabolism by phosphodiestrase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 96:100–109

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Clark RB, Giles WR (1996) Positive chronotropic responses of rabbit sino-atrial node cells to flash-photolysis of caged isoproterenol and cyclic AMP. Proc Biol Sci 263:241–248

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Fujiwara M, Ohsumi K (1977) Possible involvement of cyclic adenosine 3′:5′-monophosphate in the genesis of catecholamine-induced tachycardia in isolated rabbit sinoatrial node. J Pharmacol Exp Ther 201:678–688

    CAS  PubMed  Google Scholar 

  • Ukita T, Sugahara M, Terakawa Y, Kuroda T, Wada K, Nakata A, Ohmachi Y, Kikkawa H, Ikezawa K, Naito K (1999) Novel, potent, and selective phosphodiesterase-4 inhibitors as antiasthmatic agents: synthesis and biological activities of a series of 1-pyridylnaphthalene derivatives. J Med Chem 42:1088–1099

    Article  CAS  PubMed  Google Scholar 

  • Vargas ML, Hernandez J, Kaumann AJ (2006) Phosphodiesterase PDE3 blunts the positive inotropic and cyclic AMP enhancing effects of CGP12177 but not of noradrenaline in rat ventricle. Br J Pharmacol 147:158–163

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Vandecasteele G, Lezoualc’h F, Fischmeister R (1999) Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the Ca2+ current in rat ventricular myocytes. Br J Pharmacol 127:65–74

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D, Deo S, Barlow M, Johnson S, Caffrey JL, Zhou Y-Y, Xiao R-P, Cheng H, Stern MD, Maltsev VA, Lakatta EG (2006) High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ Res 98:505–514

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova TM, Sirenko S, Lyashkov AE, Younes A, Li Y, Zhu W, Yang D, Ruknudin AM, Spurgeon H, Lakatta EG (2008) Constitutive phosphodiesterase activity restricts spontaneous beating rate of cardiac pacemaker cells by suppressing local Ca2+ releases. Circ Res 102:761–769

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Kohr MJ, Traynham CJ, Ziolo MT (2009) Phosphodiesterase 5 restricts NOS3/soluble guanylate cyclase signalling to L-type Ca2+ current in cardiac myocytes. J Mol Cell Cardiol 47:304–314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Séneca Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto J. Kaumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaumann, A.J., Galindo-Tovar, A., Escudero, E. et al. Phosphodiesterases do not limit β1-adrenoceptor-mediated sinoatrial tachycardia: evidence with PDE3 and PDE4 in rabbits and PDE1–5 in rats. Naunyn-Schmied Arch Pharmacol 380, 421–430 (2009). https://doi.org/10.1007/s00210-009-0445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0445-5

Keywords

Navigation