Skip to main content

Advertisement

Log in

Antinociceptive effects of (O-methyl)-N-benzoyl tyramine (riparin I) from Aniba riparia (Nees) Mez (Lauraceae) in mice

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The present study examined the antinociceptive effects of (O-methyl) N-benzoyl-tyramine (riparin I, ripI) isolated from the unripe fruit of Aniba riparia in chemical and thermal behavioral models of pain, such as acetic acid-induced abdominal writhing, formalin, and hot-plate tests in mice. Moreover, the involvement of the nitric oxide pathway as well as the opioid system in the antinociceptive action of ripI in the formalin test was investigated. RipI was administered both orally and intraperitoneally to male mice at single doses of 25 and 50 mg/kg. In the acetic acid-induced abdominal writhing, ripI decreased the number of writhings at both doses. In addition, in the formalin test, ripI reduced the paw licking time at both phases of the test. The effect of the highest dose of ripI in mice formalin test on the early phase was not reversed by naloxone (opioid receptor antagonist) but it was reversed by l-arginine (a nitric oxide precursor) in the late phase, suggesting that ripI may not act through opioid system and possibly acts through inhibition of nitric oxide pathway. In the hot-plate test, ripI increased the reaction time in the hot-plate test at the dose of 25 mg/kg, i.p., confirming the result found in the formalin test. Based on the obtained results, it is suggested that ripI presents antinociceptive activity that may be due to peripheral mechanisms (nitric oxide pathway) and central mechanisms, discarding the involvement of opioid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott FV, Franklin KB, Westbrook RF (1995) The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain 60:91–102

    Article  PubMed  CAS  Google Scholar 

  • Andrade SF, Cardoso LGV, Carvalho JCT, Bastos JK (2007) Anti-inflammatory and antinociceptive activities of extract, fractions and populnoic acid from bark wood of Austroplenckia populnea. J Ethnopharmacol 109:464–471

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-Filho JM, Yoshida M, Gottlieb OR, Barbosa RCSBC, Giesbrecht AM, Young CM (1987) Benzoyl esters and amides, styrylpyrones and neolignans from the fruits of Aniba riparia. Phytochemistry 26:2615–2617

    Article  CAS  Google Scholar 

  • Bastos GNT, Santos ARS, Ferreira VMM, Costa AMR, Bispo CI, Silveira AJA, Do Nascimento JLM (2006) Antinociceptive effect of the aqueous extract obtained from roots of Psysalis angulata L. on Mice. J Ethnopharmacol 103:241–245

    Article  PubMed  CAS  Google Scholar 

  • Berkenkopf JW, Weichman BM (1988) Production of prostacyclin in mice following intraperitoneal injection of acetic acid, phenylbenzoquinone and zymosan: its role in the writhing response. Prostaglandins 36(5):693–709

    Article  PubMed  CAS  Google Scholar 

  • Castelo-Branco UJV, Thomas G, Araújo CC, Barbosa-Filho JM (1991) Atividade espasmolítica de benzamidas isoladas de Aniba riparia (parte 1). Resume VI Reunião Anual de Federação de Sociedades de Biologia Experimental, 302, 6–69

  • Castelo-Branco UV, Castelo-Branco UJV, Thomas G, Araújo CC, Barbosa-Filho JM (2000) Preliminary pharmacological studies on three benzoyl amides, constituents of Aniba riparia (Ness) Mez (Lauraceae). Acta Farm Bonaer 19(3):197–202

    CAS  Google Scholar 

  • Catão RMR, Barbosa-Filho JM, Gutierrez SJC, Lima EO, Pereira MSV, Arruda TA, Antunes RMP (2005) Avaliação da atividade antimicrobiana de riparinas sobre cepas de Staphylococus aureus e Escherichia coli multiresistentes. Rev Bras Anál Clín 34(4):247–249

    Google Scholar 

  • Chapman CR, Casey KL, Dubner R, Foley KM, Graceley RH, Reading AE (1985) Pain measurement: an overview. Pain 22:1–31

    Article  PubMed  CAS  Google Scholar 

  • Coelho LP, Reis PA, Castro FL, Gayer CRM, Lopes CS, Silva MCC, Sabino KCC, Todeschini AR, Coelho MGP (2005) Antinociceptive properties of ethanolic extract and fractions of Pterodon pubescens Benth. seeds. J Ethnopharmacol 98:109–116

    Article  PubMed  Google Scholar 

  • Collier HO, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol 32:295–310

    CAS  Google Scholar 

  • Derardt R, Jougney S, Delevalcee F, Falhout M (1980) Release of prostaglandins E and F in an algogenic reaction and its inhibition. Eur J Pharmacol 51:17–24

    Article  Google Scholar 

  • Doursout MF, Liang Y, Chelly JE (2003) NOS inhibitors exhibit antinociceptive properties in the rat formalin test. Can J Anesth 50(9):909–916

    Article  PubMed  Google Scholar 

  • Eddy NB, Leimbach D (1953) Synthetic analgesics. II. Dithienylbutenyland dithienylbutylamines. J Pharmacol Exp Ther 107:385–393

    PubMed  CAS  Google Scholar 

  • Elisabetsky E, Amador TA, Albuquerque RR, Nunes DS, Carvalho ACT (1995) Analgesic activity of Psychotria colorata (wild ex R et S) Muell. Arg. Alkaloids. J Ethnopharmacol 48:77–83

    Article  PubMed  CAS  Google Scholar 

  • Gene RM, Segura L, Adzet T, Marin E, Inglesias J (1998) Heterotheca inuloides: anti-inflammatory and analgesic effects. J Ethnopharmacol 60:157–162

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel U, Mense S (2001) The role of spinal nitric oxide in the control of spontaneous pain following nociceptive input. Schmerz 15:19–25

    Article  PubMed  Google Scholar 

  • Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114

    Article  PubMed  CAS  Google Scholar 

  • Hunskaar S, Rosland JH, Hole K (1989) Mechanisms of orphenadrine-induced antinociception in mice: a role for serotonergic pathways. Eur J Pharmacol 160(1):83–91

    Article  PubMed  CAS  Google Scholar 

  • Koster R, Anderson M, De Beer EJ (1959) Acetic acid for analgesic screening. Fed Proc 18:412

    Google Scholar 

  • Lam HH, Hanley DF, Trapp BD, Saito S, Raja S, Dawson TM, Yamaguchi H (1996) Induction of spinal cord neuronal nitric oxide synthase (NOS) after formalin injection in the rat hind paw. Neurosci Lett 210:201–204

    Article  PubMed  CAS  Google Scholar 

  • Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53:597–652

    PubMed  Google Scholar 

  • Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 521:127–136

    Article  Google Scholar 

  • Meller ST, Pechman PS, Gebhart GF, Maves TJ (1992) Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat. Neuroscience 50:7–10

    Article  PubMed  CAS  Google Scholar 

  • Melo CTV, Monteiro AP, Leite CP, Araújo FLO, Lima VTM, Barbosa-Filho JM, Fonteles MMF, Vasconcelos SMM, Viana GSB, Sousa FCF (2006) Anxiolytic-like effects of (O-methyl)-N-benzoyl-tyramine (riparin III) from Aniba riparia (Nees) Mez (Lauraceae) in mice. Biol Pharm Bull 29(3):451–454

    Article  PubMed  Google Scholar 

  • Moore PK, Oluyomi AO, Barbedge RC, Wallace P, Hart SL (1991) L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse. Br J Pharmacol 102:198–202

    PubMed  CAS  Google Scholar 

  • Okuda K, Sakurada C, Takahashi M, Yamada T, Sakurada T (2001) Characterization of nociceptive responses and spinal releases of nitric oxide metabolites and glutamate evoked by different concentrations of formalin in rats. Pain 92:107–115

    Article  PubMed  CAS  Google Scholar 

  • Paulino N, Dantas AP, Bankova V, Longhi DT, Scremin A, De Castro SL, Calixto JB (2003) Bulgarian propolis induces analgesic and anti-inflammatory effects in mice and inhibits in-vitro contraction of airway smooth muscle. J Pharmacol Sci 93:307–313

    Article  PubMed  CAS  Google Scholar 

  • Rates SMK (2001) Plants as source of drugs. Toxicon 39:603–613

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro RA, Vale ML, Thomazzi SM, Paschoalato ABP, Poole S, Ferreira SH, Cunha FQ (2000) Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol 387:111–118

    Article  PubMed  CAS  Google Scholar 

  • Semos ML, Headley PM (1994) The role of nitric oxide in spinal nociceptive reflexes in rats with neurogenic and non-neurogenic peripheral inflammation. Neuropharmacology 33:1487–1497

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Ohkubo T, Takahashi H, Inoki R (1989) Modified formalin test: characteristic biphasic pain response. Pain 38:347–352

    Article  PubMed  CAS  Google Scholar 

  • Sousa FCF, Melo CTV, Monteiro AP, Lima VTM, Gutierrez SJC, Pereira BA, Barbosa-Filho JM, Vasconcelos SMM, Fonteles MF, Viana GSB (2004) Antianxiety and antidepressant effects of riparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice. Pharmacol Biochem Behav 78:27–33

    Article  PubMed  CAS  Google Scholar 

  • Sousa FCF, Monteiro AP, Melo CTV, Oliveira GR, Vasconcelos SMM, Fonteles MMF, Gutierrez SJC, Barbosa-Filho JM, Viana GSB (2005) Antianxiety effects of riparin I from Aniba riparia (Nees) Mez (Lauraceae) in mice. Phytother Res 19:1005–1008

    Article  PubMed  Google Scholar 

  • Sousa FCF, Leite CP, Melo CTV, Araújo FLO, Gutierrez SJC, Barbosa-Filho JM, Fonteles MMF, Vasconcelos SMM, Viana GSB (2007) Evaluation of effects of N-(2-hydroxybenzoyl) tyramine (riparin II) from Aniba riparia (NEES) MEZ (Lauraceae) in anxiety models in mice. Biol Pharm Bull 30(7):1212–1216

    Article  PubMed  Google Scholar 

  • Taylor BK, Peterson MA, Basbaum AI (1995) Persistent cardiovascular and behavioral nociceptive responses to subcutaneous formalin require peripheral nerve input. J Neurosci 15:7575–7584

    PubMed  CAS  Google Scholar 

  • Thomas G, Castelo-Branco UJV, Barbosa-Filho JM, Bachelet M, Vargaftig BB (1994) Studies on the mechanism of spasmolytic activity of (O-methyl)-N-(2, 6-dihydroxybenzoyl) tyramine, a constituent of Aniba riparia (Nees) Mez (Lauraceae), in rat uterus, rabit aorta and guinea pig alveolar leucocyttes. J Pharm Pharmacol 46:103–107

    PubMed  CAS  Google Scholar 

  • Tjolsen A, Berge OG, Hunskaar S, Rosland JN, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    Article  PubMed  CAS  Google Scholar 

  • Trongsakul S, Panthong A, Kanjanapothi D, Taesotikul T (2003) The analgesic, antipyretic and anti-inflammatory activity of Diospyros variegate Kruz. J Ethnopharmacol 85:221–225

    Article  PubMed  CAS  Google Scholar 

  • Verge VM, Xu Z, Xu XJ, Wiesenfeld-Hallin Z, Hokfelt T (1992) Marked increase in nitric synthase mRNA in rat dorsal root ganglia after peripheral axotomy: in situ hybridization and functional studies. Proc Natl Acad Sci U S A 89:11617–11621

    Article  PubMed  CAS  Google Scholar 

  • Verma PR, Joharapurkar AA, Chatpalliwar VA, Asnani AJ (2005) Antinociceptive activity of alcoholic extract of Hemidesmus indicus R.Br. in mice. J Ethnopharmacol 102:298–301

    Article  PubMed  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Council of Scientific and Technological Development (CNPq) and from the Amendment Coordination of High Degree Personal (CAPES), Brazil. The authors are grateful to Dr. José Maria Barbosa-Filho, Laboratory of Pharmaceutics Technology, Federal University of Paraíba, Brazil, for the experimental drug (ripI) used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca Cléa Florenço de Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, F.L.O., Melo, C.T.V., Rocha, N.F.M. et al. Antinociceptive effects of (O-methyl)-N-benzoyl tyramine (riparin I) from Aniba riparia (Nees) Mez (Lauraceae) in mice. Naunyn-Schmied Arch Pharmacol 380, 337–344 (2009). https://doi.org/10.1007/s00210-009-0433-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0433-9

Keywords

Navigation