Skip to main content

Gastroprotective activity of isopulegol on experimentally induced gastric lesions in mice: investigation of possible mechanisms of action

Abstract

The present study investigated whether isopulegol, a monoterpene present in essential oils of several aromatic plants, would be able to promote some gastroprotective effect and also verified the possible mechanisms involved in this action. For this study, ethanol- and indomethacin-induced gastric ulcer models in mice and histopathological assessment were used. The roles of NO, sulfhydryls (glutathione, GSH), ATP-sensitive K+ channels (KATP channels), and prostaglandins were also investigated. Isopulegol exhibited a dose-related gastroprotective effect against ethanol-induced lesions, while the pretreatment with glibenclamide and indomethacin [but not with N(G)-nitro-l-arginine methyl ester] were able to reverse this action. The pretreatment with isopulegol also restored GSH levels to normal levels and exhibited dose-related gastroprotective effect against indomethacin-induced ulcer. The results suggested that isopulegol presents significant gastroprotective effects in both ethanol- and indomethacin-induced ulcer models, which appear to be mediated, at least in part, by endogenous prostaglandins, KATP channel opening, and antioxidant properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adeyemi EO, Bastaki SA, Chandranath IS et al (2005) Mechanisms of action of leptin in preventing gastric ulcer. World J Gastroenterol 11(27):4154–4160

    PubMed  CAS  Google Scholar 

  • Almeida RN, Navarro DS, Barbosa-Filho JM et al (2001) Plants with central analgesic activity. Phytomedicine 8:310–322

    PubMed  Article  CAS  Google Scholar 

  • Amaral JF, Silva MIG, Aquino Neto MR et al (2007) Antinociceptive effect of the monoterpene R-(+)-limonene in mice. Biol Pharm Bull 30(7):1217–1220

    PubMed  Article  Google Scholar 

  • Andrade SF, Lemosa M, Comunello E et al (2007) Evaluation of the antiulcerogenic activity of Maytenus robusta (Celastraceae) in different experimental ulcer models. J Ethnopharmacol 113:252–257

    PubMed  Article  Google Scholar 

  • Bhargava KP, Gupta MB, Tangri KK (1973) Mechanism of ulcerogenic activity of indomethacin and oxyphenbutazone. Eur J Pharmacol 22(2):191–195

    PubMed  Article  CAS  Google Scholar 

  • Bhatia SP, McGinty D, Letizia CS et al (2008) Fragrance material review on isopulegol. Food Chem Toxicol 46:S185–S189

    PubMed  Article  CAS  Google Scholar 

  • Brzozowski T, Konturek PC, Drozdowicz D et al (2005) Grapefruit-seed extract attenuates ethanol- and stress-induced gastric lesions via activation of prostaglandin, nitric oxide and sensory nerve pathways. World J Gastroenterol 11:6450–6458

    PubMed  Google Scholar 

  • Chandranath SI, Bastaki SMA, Singh JA (2002) Comparative study on the activity of lansoprazole, omeprazole and PD-136450 on acidified ethanol- and indomethacin-induced gastric lesions in the rat. Clin Exp Pharmacol Physiol 29(3):173–180

    PubMed  Article  CAS  Google Scholar 

  • Chuah GK, Liu SH, Jaenicke S, Harrison LJ (2001) Cyclisation of citronellal to isopulegol catalysed by hydrous zirconia and other solid acids. J Catal 200:352–359

    Article  CAS  Google Scholar 

  • Da Rocha Lapa F, Freitas CS, Baggio CH et al (2007) Gastroprotective activity of the hydroalcoholic extract obtained from Polygala paniculata L. in rats. J Pharm Pharmacol 59(10):1413–1419

    Article  Google Scholar 

  • De Sousa FC, Monteiro AP, de Melo CT et al (2005) Antianxiety effects of riparin I from Aniba riparia (Nees) Mez (Lauraceae) in mice. Phytother Res 19(12):1005–1008

    PubMed  Article  Google Scholar 

  • De Sousa DP, Gonçalves JCR, Quintans-Júnior L et al (2006) Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neurosci Lett 401:231–235

    PubMed  Article  Google Scholar 

  • De Sousa DP, Nóbrega FFF, Claudino FS et al (2007a) Pharmacological effects of the monoterpene a, b-epoxy-carvone in mice. Rev Bras Farmacogn 17(2):170–175

    Article  Google Scholar 

  • De Sousa DP, Raphael E, Brocksom U et al (2007b) Sedative effect of monoterpene alcohols in mice: a preliminary screening. Z Naturforsch C 62(7–8):563–566

    PubMed  Google Scholar 

  • Demir S, Yilmaz M, Köseoğlu M et al (2003) Role of free radicals in peptic ulcer and gastritis. Turk J Gastroenterol 14(1):39–43

    PubMed  Google Scholar 

  • Garcia ML, Hanner M, Knaus HG et al (1997) Pharmacology of potassium channels. Adv Pharmacol 39:425–471

    PubMed  Article  CAS  Google Scholar 

  • Gomes AS, Lima LMF, Santos CL et al (2006) LPS from E. coli protects indomethacin-induced gastrophaty in rats—role of ATP-sensitive K channels. Eur J Pharmacol 547(1–3):136–142

    PubMed  Article  CAS  Google Scholar 

  • Guedes MM, Carvalho AC, Lima AF et al (2008) Gastroprotective mechanisms of centipedic acid, a natural diterpene from Egletes viscosa LESS. Biol Pharm Bull 31(7):1351–5

    PubMed  Article  CAS  Google Scholar 

  • Gürbüz V, Alican I, Berrak et al (1999) Role of nitric oxide in indomethacin-induced gastric mucosal dysfunction in the rat. Exp Physiol 84(2):319–332

    PubMed  Article  Google Scholar 

  • Iwata F, Koo A, Itoh M et al (1997) Functional evidence linking potassium channels and afferent nerve-mediated mucosal protection in rat stomach. Life Sci 61(17):1713–1720

    PubMed  Article  CAS  Google Scholar 

  • Jaszewski R, Graham DY, Stromatt SC (1992) Treatment of nonsteroidal antiinflammatory drug-induced gastric ulcers with misoprostol. Dig Dis Sci 37(12):1820–1824

    PubMed  Article  CAS  Google Scholar 

  • Kim SJ, Jung YS, Kwon DY et al (2008) Alleviation of acute ethanol-induced liver injury and impaired metabolomics of S-containing substances by betaine supplementation. Biochem Biophys Res Commun 368(4):893–898

    PubMed  Article  CAS  Google Scholar 

  • Kunikata T, Araki H, Takeeda M et al (2001) Prostaglandin E prevents indomethacin-induced gastric and intestinal damage through different EP receptor subtypes. J Physiol Paris 95(1–6):157–163

    PubMed  Article  CAS  Google Scholar 

  • Laine L, Weinstein WM (1988) Histology of alcoholic hemorrhagicgastritis: a prospective evaluation. Gastroenterology 94:1254–1262

    PubMed  CAS  Google Scholar 

  • Li Y, Wang WP, Wang HY et al (2000) Intragastric administration of heparin enhances gastric ulcer healing through a nitric oxide dependent mechanism in rats. Eur J Pharmacol 399:205–214

    PubMed  Article  CAS  Google Scholar 

  • Lowry H, Rosebrough NJ, Farr AL et al (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maity S, Vedasiromoni JR, Ganguly DK (1998) Role of glutathione in the antiulcer effect of hot water extract of black tea (Camellia sinensis). Jpn J Pharmacol 78(3):285–292

    PubMed  Article  CAS  Google Scholar 

  • Masuda E, Kawano S, Nagano K et al (1995) Endogenous nitric oxide modulates ethanol-induced gastric mucosal injury in rats. Gastroenterology 108(1):58–64

    PubMed  Article  CAS  Google Scholar 

  • Matsuda H, Pongpiriyadacha Y, Morikawa T et al (2002) Protective effects of polygodial and related compounds on ethanol-induced gastric mucosal lesions in rats: structural requirements and mode of action. Bioorg Med Chem Lett 12(3):477–482

    PubMed  Article  CAS  Google Scholar 

  • Matsunaga T, Hasegawa C, Kawasuji T et al (2000) Isolation of the antiulcer compound in essential oil from the leaves of Cryptomeria japonica. Biol Pharm Bull 23:595–598

    PubMed  CAS  Google Scholar 

  • Medeiros JV, Gadelha GG, Lima SJ et al (2008) Role of the NO/cGMP/K(ATP) pathway in the protective effects of sildenafil against ethanol-induced gastric damage in rats. Br J Pharmacol 153(4):623–624

    Article  Google Scholar 

  • Meister A (1991) Glutathione deficiency produced by inhibition of its synthesis, and its reversal: applications in research and therapy. Pharmacol Ther 51:155–194

    PubMed  Article  CAS  Google Scholar 

  • Molina V, Carbajal D, Arruzazabala L et al (2005) Therapeutic effect of D-002 (Abexol) on gastric ulcer induced experimentally in rats. J Med Food 8(1):59–62

    PubMed  Article  CAS  Google Scholar 

  • Mutoh H, Hiraishi H, Ota S et al (1990) Role of oxygen radicals in ethanol-induced damage to cultured gastric mucosal cells. Am J Physiol 258:603–609

    Google Scholar 

  • Nogami M, Moriura T, Kubo M et al (1986) Studies on the origin, processing and quality of crude drugs. II: Pharmacological evaluation of the Chinese crude drug “Zhu” in experimental stomach ulcer. (2). Inhibitory effect of extract of Atractylodes lancea on gastric secretion. Chem Pharml Bull 34:3854–3860

    CAS  Google Scholar 

  • Ohtau Y, Kobayashi T, Ishiguro I (1999) Role of endogenous serotonin and histamine in the pathogenesis of gastric mucosal lesions in unanaesthetised rats with a single treatment of compound 48/80, a mast cell degranulator. Pharmacol Res 39(4):261–267

    Article  Google Scholar 

  • Olinda TM, Lemos TLG, Machado LL et al (2008) Quebrachitol-induced gastroprotection against acute gastric lesions: role of prostaglandins, nitric oxide and K+ ATP channels. Phytomedicine 15:327–333

    PubMed  Article  Google Scholar 

  • Oliveira FA, Vieira-Júnior GM, Chaves MH et al (2004) Gastroprotective and anti-inflammatory effects of resin from Protium heptaphyllum in mice and rats. Pharmacol Res 49:105–111

    PubMed  Article  CAS  Google Scholar 

  • Paik SY, Kok KH, Beak SM et al (2005) The essential oils from Zanthoxylum schinifolium pericarp induce apoptosis of HepG2 human hepatoma cells through increased production of reactive oxygen species. Biol Pharm Bull 28(5):802–807

    PubMed  Article  CAS  Google Scholar 

  • Paula AC, Toma W, Gracioso JS et al (2006) The gastroprotective effect of the essential oil of Croton cajucara is different in normal rats than in malnourished rats. Br J Nutr 96(2):310–315

    PubMed  Article  CAS  Google Scholar 

  • Peskar BM, Ehrlich K, Peskar BA (2002) Role of ATP-sensitive potassium channels in prostaglandin-mediated gastroprotection in the rat. J Pharmacol Exp Ther 301:969–974

    PubMed  Article  CAS  Google Scholar 

  • Pongpiriyadacha Y, Matsuda H, Morikawa T et al (2003) Protective effects of polygodial on gastric mucosal lesions induced by necrotizing agents in rats and the possible mechanisms of action. Biol Pharm Bull 26(5):651–657

    PubMed  Article  CAS  Google Scholar 

  • Rainsford KD (1978) Structure-activity relationships of non-steroid anti-inflammatory drug gastric ulcerogenic activity. Agents Actions 8(6):587–605

    PubMed  Article  CAS  Google Scholar 

  • Rainsford KD (1987) The effect of 5-lipoxygenase inhibitors and leukotriene antagonists on the development of gastric lesions induced by nonsteroidal antiinflammatory drugs in mice. Agents Action 21:316–319

    Article  CAS  Google Scholar 

  • Rao BRR, Kaul PN, Syamasundar KY et al (2003) Comparative composition of decanted and recovered essential oils of Eucalyptus citriodora Hook. Flav Frag J 18:133–135

    Article  CAS  Google Scholar 

  • Robert A, Nezamis JE, Lancaster C et al (1979) Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology 77(3):433–443

    PubMed  CAS  Google Scholar 

  • Rodríguez JA, Theoduloz C, Sánchez M et al (2005) Gastroprotective activity of a new semisynthetic solidagenone derivative in mice. J Pharm Pharmacol 57(2):265–271

    PubMed  Article  Google Scholar 

  • Sánchez M, Theoduloz C, Schmeda-Hirschmann G et al (2006) Gastroprotective and ulcer-healing activity of oleanolic acid derivatives: in vitro–in vivo relationships. Life Sci 79:1349–1356

    PubMed  Article  Google Scholar 

  • Santos CL, Souza MH, Gomes AS et al (2005) Sildenafil prevents indomethacin-induced gastropathy in rats: role of leukocyte adherence and gastric blood flow. Br J Pharmacol 146(4):481–486

    PubMed  Article  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman´s reagent. Anal Biochem 25(1):192–205

    PubMed  Article  CAS  Google Scholar 

  • Serra S, Brenna E, Fuganti C et al (2003) Lipase-catalyzed resolution of p-menthan-3-ols monoterpenes: preparation of the enantiomer-enriched forms of menthol, isopulegol, trans- and cis-piperitol, and cis-isopiperitenol. Tetrahedron: Asymmetry 14:3313–3319

    Article  CAS  Google Scholar 

  • Silva MIG, de Aquino Neto MR, Teixeira Neto PF et al (2007) Central nervous system activity of acute administration of isopulegol in mice. Pharmacol Biochem Behav 88(2):141–147

    PubMed  Article  CAS  Google Scholar 

  • Sousa FC, Melo CT, Monteiro AP et al (2004) Antianxiety and antidepressant effects of riparin III from Aniba riparia (Nees) Mez (Lauraceae) in mice. Pharmacol Biochem Behav 78(1):27–33

    PubMed  Article  CAS  Google Scholar 

  • Speisky H, MacDonald A, Giles G et al (1985) Increased loss and decreased synthesis of hepatic glutathione after acute ethanol administration. Turnover studies. Biochem J 225(3):565–572

    PubMed  CAS  Google Scholar 

  • Sugai Y, Ando T, Nishimura1 G et al (1968) Sulfhydryl group (total SH) and glutathione contents in digestive organs. J Gastroenterol 3(4):280–281

    Google Scholar 

  • Sun J (2007) D-Limonene: safety and clinical applications. Altern Med Rev 2(3):259–263

    Google Scholar 

  • Szabo S, Trier JS, Brown A et al (1985) A quantitative method for assessing the extent of experimental gastric erosions and ulcers. J Pharmacol Methods 13(1):59–66

    PubMed  Article  CAS  Google Scholar 

  • Takase H, Yamamoto K, Hirano H et al (1994) Pharmacological profile of gastric mucosal protection by marmim and nobiletim from traditional herbal medicine, Aurantii fructus immaturus. Jpn J Pharmacol 66:139–147

    PubMed  Article  CAS  Google Scholar 

  • Trier JS, Szabo S, Allan CH et al (1987) Ethanol-induced damage to mucosal capillaries of rat stomach. Ultrastructural features and effects of prostaglandin E2 and cysteamine. Gastroenterology 92:13–22

    PubMed  CAS  Google Scholar 

  • Vernin GA, Parkanyi C, Cozzolino F et al (2004) GC/MS analysis of the volatile constituents of Corymbia citriodora Hook. from Réunion Island. J Essent Oil Res 16:560–565

    CAS  Google Scholar 

  • Wallace JL, Granger DN (1996) The cellular and molecular basis of gastric mucosal defense. FASEB J 10:731–740

    PubMed  CAS  Google Scholar 

  • Yeo M, Kim DK, Cho SW et al (2008) Ginseng, the root of Panax ginseng C.A. Meyer, protects ethanol-induced gastric damages in rat through the induction of cytoprotective heat-shock protein 27. Dig Dis Sci 53:606–613

    PubMed  Article  Google Scholar 

  • Yoshikawa M, Sugimoto S, Nakamura S et al (2007) Medicinal flowers. XVI. New dammarane-type triterpene tetraglycosides and gastroprotective principles from flower buds of Panax ginseng. Chem Pharm Bull 55(7):1034–1038

    PubMed  Article  CAS  Google Scholar 

  • Yu K, Jiang SF, Lin MF et al (2004) Extraction and purification of biologically active intestinal trefoil factor from human meconium. Lab Invest 84:390–392

    PubMed  Article  CAS  Google Scholar 

  • Zhao W, Zhu F, Shen W et al (2009) Protective effects of DIDS against ethanol-induced gastric mucosal injury in rats. Acta Biochim Biophys Sin 41(4):301–308

    PubMed  Article  Google Scholar 

  • Zimmerman M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the CNPq and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca Cléa Florenço de Sousa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silva, M.I.G., Moura, B.A., de Aquino Neto, M.R. et al. Gastroprotective activity of isopulegol on experimentally induced gastric lesions in mice: investigation of possible mechanisms of action. Naunyn-Schmied Arch Pharmacol 380, 233–245 (2009). https://doi.org/10.1007/s00210-009-0429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0429-5

Keywords

  • Antiulcerogenic activity
  • Isopulegol
  • Monoterpene
  • Action mechanisms