Skip to main content
Log in

Muscarinic cholinergic modulation of synaptic transmission and plasticity in rat hippocampus following chronic lead exposure

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The cholinergic system is believed to be associated with learning and memory functions. Lead (Pb2+) is a well-known neurotoxic metal that causes irreversible damage to the central nervous system (CNS). To investigate whether Pb2+ interferes with cholinergic modulation, we examined the effects of carbachol (CCh), a muscarinic cholinergic agonist, on synaptic transmission and plasticity in the CA1 area of the hippocampus of developmentally Pb2+-exposed rats. The results showed that: (1) In both control and Pb2+-exposed rats, 0.1 μM CCh significantly enhanced tetanus-induced long-term potentiation (LTP), while 5 μM CCh induced a reversible depression of field excitatory postsynaptic potentials (fEPSPs). However, both the enhancement of LTP and depression of fEPSPs were significantly smaller in Pb2+-exposed rats than in controls, suggesting that the extent of the effect of CCh on the cholinergic system was depressed by Pb2+. (2) In Pb2+-exposed rats, the enhancement of LTP induced by 0.1 μM CCh was attenuated by pirenzepine, a M1AChR antagonist, but was not affected by methoctramine tetrahydrochloride (M-105), a M2/4AChR antagonist. The depression of fEPSPs induced by 5 μM CCh was reduced by either pirenzepine or M-105. (3) Furthermore, paired-pulse facilitation (PPF) was not affected by 0.1 μM CCh in control and Pb2+-exposed rats but was increased by 5 μM CCh in either group; the increase in PPF was less pronounced in Pb2+-treated when compared to control rats. These results suggested that cholinergic modulation could be impaired by Pb2+, and this kind of impairment might occur via different mAChR subtypes. Our study delineated the effects of Pb2+ on muscarinic modulation, and this might be one of the underlying mechanisms by which Pb2+ impairs learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ach:

acetylcholine

ACSF:

artificial cerebrospinal fluid

CCh:

carbachol

fEPSPs:

field excitatory postsynaptic potentials

LTP:

long-term potentiation

mAChRs:

muscarinic acetylcholine receptors

NMDA:

N-methyl-d-aspartate

Pb2+ :

lead

References

  • Abe K, Nakata A, Mizutani A, Saito H (1994) Facilitatory but nonessential role of the muscarinic cholinergic system in the generation of long-term potentiation of population spikes in the dentate gyrus in vivo. Neuropharmacology 33(7):847–852

    Article  PubMed  CAS  Google Scholar 

  • Alkondon M, Pereira EF, Barbosa CT, Albuquerque EX (1997) Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices. J Pharmacol Exp Ther 283(3):1396–1411

    PubMed  CAS  Google Scholar 

  • Altmann L, Weinsberg F, Sveinsson K, Lilienthal H, Wiegand H, Winneke G (1993) Impairment of long-term potentiation and learning following chronic lead exposure. Toxicol Lett 66(1):105–112

    Article  PubMed  CAS  Google Scholar 

  • Auerbach JM, Segal M (1994) A novel cholinergic induction of long-term potentiation in rat hippocampus. J Neurophysiol 72(4):2034–2040

    PubMed  CAS  Google Scholar 

  • Auerbach JM, Segal M (1996) Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J Physiol 492(Pt 2):479–493

    PubMed  CAS  Google Scholar 

  • Aura J, Sirvio J, Riekkinen P Jr (1997) Methoctramine moderately improves memory but pirenzepine disrupts performance in delayed non-matching to position test. Eur J Pharmacol 333(2–3):129–134

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414

    Article  PubMed  CAS  Google Scholar 

  • Benardo LS, Prince DA (1982) Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res 249(2):315–331

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  PubMed  CAS  Google Scholar 

  • Blitzer RD, Gil O, Landau EM (1990) Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci Lett 119(2):207–210

    Article  PubMed  CAS  Google Scholar 

  • Bourjeily N, Suszkiw JB (1997) Developmental cholinotoxicity of lead: loss of septal cholinergic neurons and long-term changes in cholinergic innervation of the hippocampus in perinatally lead-exposed rats. Brain Res 771(2):319–328

    Article  PubMed  CAS  Google Scholar 

  • Bressler J, Kim KA, Chakraborti T, Goldstein G (1999) Molecular mechanisms of lead neurotoxicity. Neurochem Res 24(4):595–600

    Article  PubMed  CAS  Google Scholar 

  • Busselberg D, Platt B, Michael D, Carpenter DO, Haas HL (1994) Mammalian voltage-activated calcium channel currents are blocked by Pb2+, Zn2+, and Al3+. J Neurophysiol 71(4):1491–1497

    PubMed  CAS  Google Scholar 

  • Cohn J, Cory-Slechta DA (1993) Subsensitivity of lead-exposed rats to the accuracy-impairing and rate-altering effects of MK-801 on a multiple schedule of repeated learning and performance. Brain Res 600(2):208–218

    Article  PubMed  CAS  Google Scholar 

  • Cole AE, Nicoll RA (1983) Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science 221(4617):1299–1301

    Article  PubMed  CAS  Google Scholar 

  • Cory-Slechta DA (1995) Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic, and glutamatergic neurotransmitter system functions. Annu Rev Pharmacol Toxicol 35:391–415

    PubMed  CAS  Google Scholar 

  • Cory-Slechta DA, Pokora MJ (1995) Lead-induced changes in muscarinic cholinergic sensitivity. Neurotoxicology 16(2):337–347

    PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219(4589):1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein Y, Markowitz ME, Rosen JF (1998) Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res 27(2):168–176

    Article  CAS  Google Scholar 

  • Frotscher M, Leranth C (1985) Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J Comp Neurol 239(2):237–246

    Article  PubMed  CAS  Google Scholar 

  • Hajos N, Papp EC, Acsady L, Levey AI, Freund TF (1998) Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. Neuroscience 82(2):355–376

    Article  PubMed  CAS  Google Scholar 

  • Harvey J, Balasubramaniam R, Collingridge GL (1993) Carbachol can potentiate N-methyl-D-aspartate responses in the rat hippocampus by a staurosporine and thapsigargin-insensitive mechanism. Neurosci Lett 162(1–2):165–168

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3(9):351–359

    Article  PubMed  Google Scholar 

  • Herreras O, Solis JM, Herranz AS, Martin del Rio R, Lerma J (1988) Sensory modulation of hippocampal transmission. II. Evidence for a cholinergic locus of inhibition in the Schaffer-CA1 synapse. Brain Res 461(2):303–313

    Article  PubMed  CAS  Google Scholar 

  • Hori N, Busselberg D, Matthews MR, Parsons PJ, Carpenter DO (1993) Lead blocks LTP by an action not at NMDA receptors. Exp Neurol 119(2):192–197

    Article  PubMed  CAS  Google Scholar 

  • Hori H, Haruta K, Nanki M, Sakamoto N, Uemura K, Matsubara T et al (1995) Pressor response induced by the hippocampal administration of neostigmine is suppressed by M1 muscarinic antagonist. Life Sci 57(20):1853–1859

    Article  PubMed  CAS  Google Scholar 

  • Institute of Laboratory Animal Resources (1996) Guide for the Care and Use of Laboratory Animals. National Academy Press. Washington, DC

  • Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15(5 Pt 2):4077–4092

    PubMed  CAS  Google Scholar 

  • Lewis PR, Shute CC (1967) The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain 90(3):521–540

    Article  PubMed  CAS  Google Scholar 

  • Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126(Pt 1):5–19

    Article  PubMed  Google Scholar 

  • Luo L, Chen WH, Wang M, Zhu DM, She JQ, Ruan DY (2008) Modulation of long-term potentiation by individual subtypes of muscarinic acetylcholine receptor in the rat dentate gyrus. Hippocampus. doi:10.1002/hipo.20461

  • Madison DV, Lancaster B, Nicoll RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci 7(3):733–741

    PubMed  CAS  Google Scholar 

  • Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ (1998) Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-d-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci USA 95(19):11465–11470

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J Physiol 375:169–194

    PubMed  CAS  Google Scholar 

  • Minnema DJ, Greenland RD, Michaelson IA (1986) Effect of in vitro inorganic lead on dopamine release from superfused rat striatal synaptosomes. Toxicol Appl Pharmacol 84(2):400–411

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y, Nakajima S, Leonard RJ, Yamaguchi K (1986) Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons. Proc Natl Acad Sci USA 83(9):3022–3026

    Article  PubMed  CAS  Google Scholar 

  • Nehru B, Sidhu P (2001) Behavior and neurotoxic consequences of lead on rat brain followed by recovery. Biol Trace Elem Res 84(1–3):113–121

    Article  PubMed  CAS  Google Scholar 

  • Patil MM, Linster C, Lubenov E, Hasselmo ME (1998) Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. J Neurophysiol 80(5):2467–2474

    PubMed  CAS  Google Scholar 

  • Qian J, Saggau P (1997) Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx. Br J Pharmacol 122(3):511–519

    Article  PubMed  CAS  Google Scholar 

  • Rouse ST, Edmunds SM, Yi H, Gilmor ML, Levey AI (2000) Localization of M(2) muscarinic acetylcholine receptor protein in cholinergic and non-cholinergic terminals in rat hippocampus. Neurosci Lett 284(3):182–186

    Article  PubMed  CAS  Google Scholar 

  • Ruan DY, Chen JT, Zhao C, Xu YZ, Wang M, Zhao WF (1998) Impairment of long-term potentiation and paired-pulse facilitation in rat hippocampal dentate gyrus following developmental lead exposure in vivo. Brain Res 806(2):196–201

    Article  PubMed  CAS  Google Scholar 

  • Shao Z, Suszkiw JB (1991) Ca2+-surrogate action of Pb2+ on acetylcholine release from rat brain synaptosomes. J Neurochem 56(2):568–574

    Article  PubMed  CAS  Google Scholar 

  • Sui L, Ruan DY (2000) Impairment of the Ca2+-permeable AMPA/kainate receptors by lead exposure in organotypic rat hippocampal slice cultures. Pharmacol Toxicol 87(5):204–210

    Article  PubMed  CAS  Google Scholar 

  • Suszkiw J, Toth G, Murawsky M, Cooper GP (1984) Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ. Brain Res 323(1):31–46

    Article  PubMed  CAS  Google Scholar 

  • Toth K, McBain CJ (2000) Target-specific expression of pre- and postsynaptic mechanisms. J Physiol 525(Pt 1):41–51

    Article  PubMed  CAS  Google Scholar 

  • Ujihara H, Sasa M, Ban T (1995) Selective blockade of P-type calcium channels by lead in cultured hippocampal neurons. Jpn J Pharmacol 67(3):267–269

    Article  PubMed  CAS  Google Scholar 

  • Uteshev V, Busselberg D, Haas HL (1993) Pb2+ modulates the NMDA-receptor-channel complex. Naunyn-Schmiedeberg’s Arch Pharmacol 347(2):209–213

    Article  CAS  Google Scholar 

  • van Koppen CJ, Kaiser B (2003) Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 98(2):197–220

    Article  PubMed  Google Scholar 

  • Williams S, Johnston D (1988) Muscarinic depression of long-term potentiation in CA3 hippocampal neurons. Science 242(4875):84–87

    Article  PubMed  CAS  Google Scholar 

  • Winkler J, Thal LJ, Gage FH, Fisher LJ (1998) Cholinergic strategies for Alzheimer’s disease. J Mol Med 76(8):555–567

    Article  PubMed  CAS  Google Scholar 

  • Yun SH, Cheong MY, Mook-Jung I, Huh K, Lee C, Jung MW (2000) Cholinergic modulation of synaptic transmission and plasticity in entorhinal cortex and hippocampus of the rat. Neuroscience 97(4):671–676

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Liu AP, Ruan DY, Liu J (2002) Effect of developmental lead exposure on the expression of specific NMDA receptor subunit mRNAs in the hippocampus of neonatal rats by digoxigenin-labeled in situ hybridization histochemistry. Neurotoxicol Teratol 24(2):149–160

    Article  PubMed  Google Scholar 

  • Zhao WF, Ruan DY, Xu YZ, Chen JT, Wang M, Ge SY (1999) The effects of chronic lead exposure on long-term depression in area CA1 and dentate gyrus of rat hippocampus in vitro. Brain Res 818(1):153–159

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12:13–31

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS (1999) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9(3):305–313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (no. 2002CB512907), the National Nature Science Foundation of China (nos. 30630057; 30670554; 30670662; 30672290), Academia Sinica (no. KZCX3-SW-437), China Postdoctoral Science Foundation (no. 20060400719), K. C. Wong Education Foundation of Hong Kong and Anhui High Education Natural Science Program (no. ZD2008010-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di-Yun Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, M., Luo, L., Zhu, D. et al. Muscarinic cholinergic modulation of synaptic transmission and plasticity in rat hippocampus following chronic lead exposure. Naunyn-Schmied Arch Pharmacol 379, 37–45 (2009). https://doi.org/10.1007/s00210-008-0344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0344-1

Keywords

Navigation