Skip to main content
Log in

Effects of curcumin on ethanol-induced hepatocyte necrosis and apoptosis: implication of lipid peroxidation and cytochrome c

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Ethanol-induced hepatocyte necrosis and apoptosis are valid in vitro models to investigate the modulatory effects of hepatoprotective/toxic agents such as curcumin. In this study, suspension and monolayer cultures of isolated rat hepatocytes were used. Levels of trypan blue uptake, reduced glutathione, and lipid peroxidation were quantified. Chromatin condensation, caspase-3 activity, and cytochrome c extramitochondrial translocation were also evaluated. Results revealed that curcumin did not protect against either ethanol-induced necrosis or glutathione depletion. Neither did curcumin reduce caspase-3 activation nor chromatin condensation. In contrast, curcumin induced glutathione depletion, caspase-3 activation, necrosis, and apoptosis. Fortunately, all tested curcumin concentrations (1 μM–10 mM) diminished the ethanol-induced lipid peroxidation. In addition, 1 μM curcumin decreased cytochrome c translocation in hepatocyte monolayers. In conclusion, low concentrations of curcumin may protect hepatocytes by reducing lipid peroxidation and cytochrome c release. Conversely, higher concentrations provoke glutathione depletion, caspase-3 activation, and hepatocytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ac-DEVD-pNA:

Acetyl-Asp-Glu-Val-Asp p-nitroanilide

ANOVA:

analysis of variance

BSA:

bovine serum albumin

Casp-3:

caspase-3

Cur:

curcumin

Cyt c :

cytochrome c

DMSO:

dimethyl sulfoxide

DTT:

dithiothreitol

EDTA:

ethylenediaminetetraacetic acid

EtOH:

ethanol

GSH:

reduced glutathione

H:

Hoechst 33258

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HRP:

horseradish peroxidase

KH:

Krebs-Henseleit

KR:

Krebs-Ringer

LDH:

lactate dehydrogenase

LP:

lipid peroxidation

MDA:

malondialdehyde

opm:

oscillations per minute

PBS:

phosphate-buffered saline

PI:

propidium iodide

pNA:

p-nitroaniline

ROS:

reactive oxygen species

SDS-PAGE:

sodium dodecyl sulphate–polyacrylamide gel electrophoresis

TB:

trypan blue

TBA:

thiobarbituric acid

TBARS:

TBA reactive substances

WME:

Williams’ medium E

References

  • Adachi S, Gottlieb RA, Babior BM (1998) Lack of release of cytochrome C from mitochondria into cytosol early in the course of Fas-mediated apoptosis of Jurkat cells. J Biol Chem 273:19892–19894

    Article  PubMed  CAS  Google Scholar 

  • Anto RJ, Mukhopadhyay A, Denning K, Aggarwal BB (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23:143–150

    Article  PubMed  CAS  Google Scholar 

  • Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43:506–520

    Article  PubMed  CAS  Google Scholar 

  • Berry MN, Edwards AM, Barritt GJ, Grivell MB (1991) Isolated hepatocytes: preparation, properties and applications. Elsevier, Amsterdam

    Book  Google Scholar 

  • Bilodeau M (2003) Liver cell death: update on apoptosis. Can J Gastroenterol 17:501–506

    PubMed  Google Scholar 

  • Bossy-Wetzel E, Green DR (2000) Assays for cytochrome c release from mitochondria during apoptosis. In: Reed JC (ed) Apoptosis. Methods in enzymology, Vol 322. Academic Press, Toronto

    Google Scholar 

  • Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149

    Article  PubMed  CAS  Google Scholar 

  • Cain K (2000) Toxicological consequences of caspase inhibition and activation. In: Roberts R (ed) Apoptosis in Toxicology. Taylor & Francis, New York

    Google Scholar 

  • Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9:161–168

    Article  PubMed  Google Scholar 

  • Chen J, Clemens DL, Cederbaum AI, Gao B (2001) Ethanol inhibits the JAK-STAT signaling pathway in freshly isolated rat hepatocytes but not in cultured hepatocytes or HepG2 cells: evidence for a lack of involvement of ethanol metabolism. Clin Biochem 34:203–209

    Article  PubMed  CAS  Google Scholar 

  • Cheng AL, Hsu CH, Lin JK et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    PubMed  CAS  Google Scholar 

  • Cobreros A, Sainz L, Lasheras B, Cenarruzabeitia E (1997) Hepatotoxicity of ethanol: protective effect of calcium channel blockers in isolated hepatocytes. Liver 17:76–82

    PubMed  CAS  Google Scholar 

  • Cohly HH, Taylor A, Angel MF, Salahudeen AK (1998) Effect of turmeric, turmerin and curcumin on H2O2-induced renal epithelial (LLC-PK1) cell injury. Free Radic Biol Med 24:49–54

    Article  PubMed  CAS  Google Scholar 

  • Donatus IA, Sardjoko, Vermeulen NP (1990) Cytotoxic and cytoprotective activities of curcumin. Effects on paracetamol-induced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes. Biochem Pharmacol 39:1869–1875

    Article  PubMed  CAS  Google Scholar 

  • Duval M, Plin C, Elimadi A et al (2006) Implication of mitochondrial dysfunction and cell death in cold preservation—warm reperfusion-induced hepatocyte injury. Can J Physiol Pharmacol 84:547–554

    PubMed  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Frenzel J, Richter J, Eschrich K (2002) Fructose inhibits apoptosis induced by reoxygenation in rat hepatocytes by decreasing reactive oxygen species via stabilization of the glutathione pool. Biochim Biophys Acta 1542:82–94

    Article  PubMed  CAS  Google Scholar 

  • Gajate C, An F, Mollinedo F (2003) Rapid and selective apoptosis in human leukemic cells induced by Aplidine through a Fas/CD95- and mitochondrial-mediated mechanism. Clin Cancer Res 9:1535–1545

    PubMed  CAS  Google Scholar 

  • Galati G, Sabzevari O, Wilson JX, O’Brien PJ (2002) Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177:91–104

    Article  PubMed  CAS  Google Scholar 

  • Gautam SC, Xu YX, Pindolia KR et al (1998) Nonselective inhibition of proliferation of transformed and nontransformed cells by the anticancer agent curcumin (diferuloylmethane). Biochem Pharmacol 55:1333–1337

    Article  PubMed  CAS  Google Scholar 

  • Ghoneim AI, Abdel-Naim AB, Khalifa AE, El-Denshary ES (2002) Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol Res 46:273–279

    Article  PubMed  CAS  Google Scholar 

  • Ghoneim AI, Elimadi A, Haddad PS (2003) Implication of mitochondrial dysfunction and apoptosis in cold preservation/warm reperfusion-induced hepatocyte injury. Can J Gastroenterol 17(Suppl A):52 [abstract] Available via http://www.pulsus.com/cddw2003/abs/abs052.htm

    Google Scholar 

  • Ghoneim AI, Khalifa AE, El-Demerdash E, Abdel-Naim AB (2005) Hepatoprotective effects of glycine and Astragalus boeticus against ethanol-induced hepatocyte death. Forty-seventh Annual Conference of the Egyptian Society of Pharmacology & Experimental Therapeutics:17 [abstract]

  • Gómez-Lechón MJ, O’Connor E, Castell JV, Jover R (2002) Sensitive markers used to identify compounds that trigger apoptosis in cultured hepatocytes. Toxicol Sci 65:299–308

    Article  PubMed  Google Scholar 

  • Guillouzo A (1998) Liver cell models in in vitro toxicology. Environ Health Perspect 106(Suppl 2):511–532

    Article  PubMed  CAS  Google Scholar 

  • Gumpricht E, Devereaux MW, Dahl RH, Sokol RJ (2000) Glutathione status of isolated rat hepatocytes affects bile acid-induced cellular necrosis but not apoptosis. Toxicol Appl Pharmacol 164:102–111

    Article  PubMed  CAS  Google Scholar 

  • Gumpricht E, Dahl R, Yerushalmi B et al (2002) Nitric oxide ameliorates hydrophobic bile acid-induced apoptosis in isolated rat hepatocytes by non-mitochondrial pathways. J Biol Chem 277:25823–25830

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H, Adachi M, Miura S et al (2001) The mitochondrial permeability transition contributes to acute ethanol-induced apoptosis in rat hepatocytes. Hepatology 34:320–328

    Article  PubMed  CAS  Google Scholar 

  • Ireson C, Orr S, Jones DJ et al (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61:1058–1064

    PubMed  CAS  Google Scholar 

  • Jiang MC, Yang-Yen HF, Yen JJ, Lin JK (1996) Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, He L, Qian T, Lemasters JJ (2003) Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med 3:527–535

    Article  PubMed  CAS  Google Scholar 

  • Kurose I, Higuchi H, Kato S et al (1997a) Oxidative stress on mitochondria and cell membrane of cultured rat hepatocytes and perfused liver exposed to ethanol. Gastroenterology 112:1331–1343

    Article  PubMed  CAS  Google Scholar 

  • Kurose I, Higuchi H, Miura S et al (1997b) Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology 25:368–378

    Article  PubMed  CAS  Google Scholar 

  • Le PM, Benhaddou-Andaloussi A, Elimadi A et al (2004) The petroleum ether extract of Nigella sativa exerts lipid-lowering and insulin-sensitizing actions in the rat. J Ethnopharmacol 94:251–259

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Luper S (1998) A review of plants used in the treatment of liver disease: part 1. Altern Med Rev 3:410–421

    PubMed  CAS  Google Scholar 

  • Mathews S, Rao MNA (1991) Interaction of curcumin with glutathione. Int J Pharm 76:257–259

    Article  CAS  Google Scholar 

  • Matsuda H, Ninomiya K, Morikawa T, Yoshikawa M (1998) Inhibitory effect and action mechanism of sesquiterpenes from Zedoariae Rhizoma on D-galactosamine/lipopolysaccharide-induced liver injury. Bioorg Med Chem Lett 8:339–344

    Article  PubMed  CAS  Google Scholar 

  • Mehta K, Pantazis P, McQueen T, Aggarwal BB (1997) Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8:470–481

    Article  PubMed  CAS  Google Scholar 

  • Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Kapoor N, Mubarak Ali A et al (2005) Differential apoptotic and redox regulatory activities of curcumin and its derivatives. Free Radic Biol Med 38:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Morikawa T, Matsuda H, Ninomiya K, Yoshikawa M (2002) Medicinal foodstuffs. XXIX. Potent protective effects of sesquiterpenes and curcumin from Zedoariae Rhizoma on liver injury induced by D-galactosamine/lipopolysaccharide or tumor necrosis factor-alpha. Biol Pharm Bull 25:627–631

    Article  PubMed  CAS  Google Scholar 

  • Morin D, Barthelemy S, Zini R et al (2001) Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett 495:131–136

    Article  PubMed  CAS  Google Scholar 

  • Motulsky H (1995) Intuitive biostatistics. Oxford University Press, New-York

    Google Scholar 

  • Naik RS, Mujumdar AM, Ghaskadbi S (2004) Protection of liver cells from ethanol cytotoxicity by curcumin in liver slice culture in vitro. J Ethnopharmacol 95:31–37

    Article  PubMed  CAS  Google Scholar 

  • Nanji AA, Hiller-Sturmhöfel S (1997) Apoptosis and necrosis: two types of cell death in alcoholic liver disease. Alcohol Health Res World 21:325–330

    PubMed  CAS  Google Scholar 

  • Nicholson DW, Ali A, Thornberry NA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  PubMed  CAS  Google Scholar 

  • Pallardy M, Biola A, Lebrec H, Breard J (1999) Assessment of apoptosis in xenobiotic-induced immunotoxicity. Methods 19:36–47

    Article  PubMed  CAS  Google Scholar 

  • Pan MH, Huang TM, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494

    PubMed  CAS  Google Scholar 

  • Park EJ, Jeon CH, Ko G et al (2000) Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. J Pharm Pharmacol 52:437–440

    Article  PubMed  CAS  Google Scholar 

  • Piwocka K, Jaruga E, Skierski J et al (2001) Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. Free Radic Biol Med 31:670–678

    Article  PubMed  CAS  Google Scholar 

  • Plaa GL (2000) Chlorinated methanes and liver injury: highlights of the past 50 years. Annu Rev Pharmacol Toxicol 40:42–65

    Article  PubMed  CAS  Google Scholar 

  • Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  PubMed  CAS  Google Scholar 

  • Rauen U, Polzar B, Stephan H et al (1999) Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB J 13:155–168

    PubMed  CAS  Google Scholar 

  • Raza H, John A, Brown EM et al (2008) Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol 226:161–168

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (2000) Preface. In: Reed JC (ed) Apoptosis. Methods in Enzymology, Vol 322. Academic Press, Toronto

    Google Scholar 

  • Romiti N, Tongiani R, Cervelli F, Chieli E (1998) Effects of curcumin on P-glycoprotein in primary cultures of rat hepatocytes. Life Sci 62:2349–2358

    Article  PubMed  CAS  Google Scholar 

  • Saraswat B, Visen PK, Agarwal DP (2000) Ursolic acid isolated from Eucalyptus tereticornis protects against ethanol toxicity in isolated rat hepatocytes. Phytother Res 14:163–166

    Article  PubMed  CAS  Google Scholar 

  • Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  PubMed  CAS  Google Scholar 

  • Sergent O, Pereira M, Belhomme C et al (2005) Role for membrane fluidity in ethanol-induced oxidative stress of primary rat hepatocytes. J Pharmacol Exp Ther 313:104–111

    Article  PubMed  CAS  Google Scholar 

  • Shapiro H, Ashkenazi M, Weizman N et al (2006) Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. J Gastroenterol Hepatol 21:358–366

    Article  PubMed  CAS  Google Scholar 

  • Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968

    Article  PubMed  CAS  Google Scholar 

  • Shoba G, Joy D, Joseph T et al (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    Article  PubMed  CAS  Google Scholar 

  • Sikora E, Bielak-Zmijewska A, Piwocka K et al (1997) Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. Biochem Pharmacol 54:899–907

    Article  PubMed  CAS  Google Scholar 

  • Somasundaram S, Edmund NA, Moore DT et al (2002) Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res 62:3868–3875

    PubMed  CAS  Google Scholar 

  • Syng-Ai C, Kumari AL, Khar A (2004) Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 3:1101–1108

    PubMed  CAS  Google Scholar 

  • T¢nnesen HH, Greenhill JV (1992) Studies on curcumin and curcuminoids: curcumin as a reducing agent and as a radical scavenger. Int J Pharm 87:79–87

    Article  Google Scholar 

  • Watanabe S, Fukui T (2000) Suppressive effect of curcumin on trichloroethylene-induced oxidative stress. J Nutr Sci Vitaminol (Tokyo) 46:230–234

    CAS  Google Scholar 

  • Zhao ZS, O’Brien PJ (1996) The prevention of CCl4-induced liver necrosis in mice by naturally occurring methylenedioxybenzenes. Toxicol Appl Pharmacol 140:411–421

    Article  PubMed  CAS  Google Scholar 

  • Zheng S, Yumei F, Chen A (2007) De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation. Free Radic Biol Med 43:444–453

    Article  PubMed  CAS  Google Scholar 

  • Zhu YG, Chen XC, Chen ZZ et al (2004) Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol Sin 25:1606–1612

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Pierre Haddad’s research group (Université de Montréal, Canada) for technical support. Special thanks are due to Dr. Aya Asaad (University of Alexandria, Egypt) and Dr. Ebtehal El-Demerdash (Ain Shams University, Egypt) for valuable comments. This study was supported by the Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asser I. Ghoneim.

Additional information

A part of this work was presented in abstract form at the 1st Scientific Conference of Faculty of Pharmacy, Cairo University, 29 March 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoneim, A.I. Effects of curcumin on ethanol-induced hepatocyte necrosis and apoptosis: implication of lipid peroxidation and cytochrome c . Naunyn-Schmied Arch Pharmacol 379, 47–60 (2009). https://doi.org/10.1007/s00210-008-0335-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0335-2

Keywords

Navigation