Skip to main content
Log in

Roles of TRP channels in the development of cardiac hypertrophy

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy is induced by various stresses such as hypertension and myocardial infarction. It is believed that hypertrophy is adaptive in the early phase but becomes maladaptive in the late phase. Cardiac hypertrophy develops heart failure when the heart is exposed persistently to the stresses. The increase in intracellular Ca2+ ([Ca2+]i) plays an important role in the development of hypertrophy. It is generally thought that the increase in [Ca2+]i for hypertrophy occurs via Gq-stimulated production of inositol-1,4,5-trisphosphate (IP3) and IP3-mediated release of Ca2+ from intracellular store. However, several groups recently reported that canonical transient receptor potential (TRPC) channels are responsible for the increase in [Ca2+]i. Among them, three TRPC subtypes (TRPC3/TRPC6/TRPC7) are activated by another Gq-mediated second messenger, diacylglycerol. Although several groups independently demonstrated that TRPC channels mediate receptor-stimulated and pressure overload-induced hypertrophy, there is discrepancy of which subtypes of TRPC channels predominantly mediate hypertrophy. However, there is consensus that TRPC-mediated Ca2+ influx is essential for hypertrophy. As TRPC channels participate in pathological hypertrophy, but not physiological contraction and the relaxation cycle, TPRC channels are a new target for the treatment of hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW 2nd (1998) Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 95:10140–10145

    Article  PubMed  CAS  Google Scholar 

  • Arai K, Maruyama Y, Nishida M, Tanabe S, Kozasa T, Mori Y, Nagao T, Kurose H (2003) Differential requirement of Gα12, Gα13, Gαq, and Gβγ for endothelin-1-induced c-Jun NH2-terminal kinase and extracellular signal-regulated kinase activation. Mol Pharmacol 63:478–488

    Article  PubMed  CAS  Google Scholar 

  • Arimoto T, Takeishi Y, Takahashi H, Shishido T, Niizeki T, Koyama Y, Shiga R, Nozaki N, Nakajima O, Nishimaru K, Abe J, Endoh M, Walsh RA, Goto K, Kubota I (2006) Cradiac-specific overexpression of diacylglycerol kinase ζ prevents Gq protein-coupled receptor agonist-induced cardiac hypertrophy in transgenic mice. Circulation 113:60–66

    Article  PubMed  CAS  Google Scholar 

  • Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B (2003) Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res 93:46–53

    Article  PubMed  CAS  Google Scholar 

  • Bowman JC, Steinberg SF, Jiang T, Geenen DL, Fishman GI, Buttrick PM (1997) Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J Clin Invest 100:2189–2195

    Article  PubMed  CAS  Google Scholar 

  • Brenner JS, Dolmetsch RE (2007) TrpC3 regulates hypertrophy-associated gene expression without affecting myocyte beating or cell size. PLoS One 2(8):e802

    Article  PubMed  CAS  Google Scholar 

  • Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng C-F, Kitsis RN, Molkentin JD (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341–6350

    Article  PubMed  CAS  Google Scholar 

  • Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496

    Article  PubMed  CAS  Google Scholar 

  • Colella M, Grisan F, Robert V, Turner JD, Thomas AP, Pozzan T (2008) Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: Role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci USA 105:2859–2864

    Article  PubMed  CAS  Google Scholar 

  • Dalrymple A, Mahn K, Poston L, Songu-Mize E, Tribe RM (2007) Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Mol Hum Reprod 13:171–179

    Article  PubMed  CAS  Google Scholar 

  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    Article  PubMed  CAS  Google Scholar 

  • Dorn GW (2007) The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49:962–970

    Article  PubMed  CAS  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  PubMed  CAS  Google Scholar 

  • Graham S, Ding M, Sours-Brothers S, Yorio T, Ma J-X, Ma R (2007) Downregulation of TRPC6 protein by high glucose, a possible mechanism for the impaired Ca2+ signaling in glomerular mesangial cells. Am J Physiol Renal Physiol 293:F1381–F1390

    Article  PubMed  CAS  Google Scholar 

  • Grantham CJ, Cannell MB (1996) Ca2+ influx during the cardiac action potential in guinea pig ventricular myocytes. Circ Res 79:194–200

    PubMed  CAS  Google Scholar 

  • Guinamard R, Bois P (2007) Involvement of transient receptor potential proteins in cardiac hypertrophy. Biochim Biophys Acta 1772:885–894

    PubMed  CAS  Google Scholar 

  • Guinamard R, Demion M, Magaud C, Potreau D, Bois P (2006) Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48:587–594

    Article  PubMed  CAS  Google Scholar 

  • Gwack Y, Feske S, Srikanth S, Hogan PG, Rao A (2007) Signaling to transcription: Store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 42:145–156

    Article  PubMed  CAS  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Rev Mol Cell Biol 7:589–600

    Article  CAS  Google Scholar 

  • Ho KK, Pinsky JL, Kannel WB, Levy D (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22:6A–13A

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466

    Article  PubMed  CAS  Google Scholar 

  • Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131

    Article  PubMed  CAS  Google Scholar 

  • Irvine RF (2003) Nuclear lipid signaling. Nature Rev Mol Cell Biol 4:1–12

    Google Scholar 

  • Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161:957–967

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Miyamoto S, Brown JH (2003) Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae. J Biol Chem 278:31111–31117

    Article  PubMed  CAS  Google Scholar 

  • Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482

    Article  PubMed  CAS  Google Scholar 

  • Kiselyov K, Shin DM, Wang Y, Pessah IN, Allen PD, Muallem S (2000) Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol Cell 6:421–431

    Article  PubMed  CAS  Google Scholar 

  • Klein L, O’Connor CM, Gattis WA, Zampino M, de Luca L, Vitarelli A, Fedele F, Gheorghiade M (2003) Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations. Am J Cardiol 91:18F–40F

    Article  PubMed  CAS  Google Scholar 

  • Kunichika N, Landsberg JW, Yu Y, Kunichika H, Thistlethwaite PA, Rubin LJ, Yuan JX-J (2004) Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am J Respir Crit Care Med 170:1101–1107

    Article  PubMed  Google Scholar 

  • Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–3126

    Article  PubMed  CAS  Google Scholar 

  • Large WA (2002) Receptor-operated Ca2+-permeable nonselective cation channels in vascular smooth muscle: A physiologic perspective. J Cardiovas Electrophysiol 13:493–501

    Article  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  PubMed  CAS  Google Scholar 

  • Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Eng J Med 322:1561–1566

    CAS  Google Scholar 

  • Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MLJ, Ho KKL, Murabito JM, Vasan RS (2002) Long-term trends in the incidence and survival with heart failure. New Engl J Med 347:1397–1402

    Article  PubMed  Google Scholar 

  • Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(−/−) mice. Proc Natl Acad Sci USA 104:17542–17547

    Article  PubMed  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    Article  PubMed  CAS  Google Scholar 

  • Maruyama Y, Nishida M, Sugimoto Y, Tanabe S, Turner JH, Kozasa T, Wada T, Nagao T, Kurose H (2002) Gα12/13 mediates α1-adrenergic receptor-induced cardiac hypertrophy. Circ Res 91:961–969

    Article  PubMed  CAS  Google Scholar 

  • McKinsey TA, Olson EN (1999) Cardiac hypertrophy: sorting out the circuitry. Curr Opin Gen Dev 9:267–274

    Article  CAS  Google Scholar 

  • McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 34:255–262

    PubMed  CAS  Google Scholar 

  • Molkentin JD, Lu J-R, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med 18:673–681

    Article  Google Scholar 

  • Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20:1660–1670

    Article  PubMed  CAS  Google Scholar 

  • Nishida M, Sugimoto K, Hara Y, Mori E, Morii T, Kurosaki T, Mori Y (2003) Amplification of receptor signaling by Ca2+ entry-mediated translocation and activation of phospholipase Cγ2 in B lymphocytes. EMBO J 22:4677–4688

    Article  PubMed  CAS  Google Scholar 

  • Nishida M, Tanabe S, Maruyama Y, Mangmool S, Urayama K, Nagamatsu Y, Takagahara S, Turner JH, Kozasa T, Kobayashi H, Sato Y, Kawanishi T, Inoue R, Nagao T, Kurose H (2005) Gα12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem 280:18434–18441

    Article  PubMed  CAS  Google Scholar 

  • Nishida M, Hara Y, Yoshida T, Inoue R, Mori Y (2006) TRP channels: molecular diversity and physiological function. Microcirculation 13:535–550

    Article  PubMed  CAS  Google Scholar 

  • Nishida M, Onohara N, Sato Y, Suda R, Ogushi M, Tanabe S, Inoue R, Mori Y, Kurose H (2007) Gα12/13-mediated up-regulation of TRPC6 negatively regulates endothelin-1-induced cardiac myofibroblast formation and collagen synthesis through nuclear factor of activated T cells activation. J Biol Chem 282:23117–23128

    Article  PubMed  CAS  Google Scholar 

  • Ohba T, Watanabe H, Takahashi Y, Suzuki T, Miyoshi I, Nakayama S, Satoh E, Iino K, Sasano H, Mori Y, Kuromitsu S, Imagawa K, Saito Y, Iijima T, Ito H, Murakami M (2006) Regulatory role of neuron-restrictive silencing factor in expression of TRPC1. Biochem Biophys Res Commun 351:764–770

    Article  PubMed  CAS  Google Scholar 

  • Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T, Ito H (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42:498–507

    Article  PubMed  CAS  Google Scholar 

  • Onohara N, Mishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316

    Article  PubMed  CAS  Google Scholar 

  • Paria BC, Malik AB, Kwiatek AM, Rahman A, May MJ, Ghosh S, Tiruppathi C (2003) Tumor necrosis factor-α induces nuclear factor-κB-dependent TRPC1 expression in endothelial cells. J Biol Chem 278:37195–37203

    Article  PubMed  CAS  Google Scholar 

  • Paria BC, Bair AM, Xue J, Yu Y, Malik AB, Tiruppathi C (2006) Ca2+ influx induced by protease-activated receptor-1 activates feed-forward mechanism of TRPC1 expression via nuclear factor-κB activation in endothelial cells. J Biol Chem 281:20715–20727

    Article  PubMed  CAS  Google Scholar 

  • Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4-heteromeric channels in endothelial cells. J Biol Chem 281:13588–13595

    Article  PubMed  CAS  Google Scholar 

  • Riddle EL, Schwartzman RA, Bond M, Insel PA (2006) Multi-tasking RGS proteins in the heart: the next therapeutic target? Circ Res 96:401–411

    Article  CAS  Google Scholar 

  • Roderick HL, Bootman MD (2007) Pacemaking, arrythmias, inotrophy and hypertrophy: the many possible facets of IP3 signaling in cardiac myocytes. J Physiol 581:883–884

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg P, Hawkins A, Stiber J, Shelton JM, Hutcheson K, Bassel-Duby R, Shin DM, Yan Z, Williams RS (2004) TRPC3 channels confer cellular memory of recent neuromuscular activity. Proc Natl Acad Sci USA 101:9387–9392

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sugimoto H, Mori Y, Makino N (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215

    Article  PubMed  CAS  Google Scholar 

  • Seth M, Sumbilla C, Mullen SP, Lewis D, Klein MG, Hussain A, Soboloff J, Gill DL, Inesi G (2004) Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA 101:16683–16688

    Article  PubMed  CAS  Google Scholar 

  • Shan D, Marchase RB, Chatham JC (2008) Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia/reperfusion in adult mouse cardiomyocytes. Am J Physiol Cell Physiol 294:C833–841

    Article  PubMed  CAS  Google Scholar 

  • Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99

    Article  PubMed  CAS  Google Scholar 

  • Singh I, Knezevic N, Ahmmed GU, Kini V, Malik AB, Mehta D (2007) Gαq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282:7833–7843

    Article  PubMed  CAS  Google Scholar 

  • Smyth JT, DeHaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney Jr JW (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochem Biophys Acta 1763:1147–1160

    Article  PubMed  CAS  Google Scholar 

  • Strübing C, Krapivinsky G, Krapvinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Article  PubMed  Google Scholar 

  • Timmerman LA, Clipstone NA, Ho SN, Northrop JP, Crabtree GR (1996) Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383:837–840

    Article  PubMed  CAS  Google Scholar 

  • Vazquez G, Bird GS, Mori Y, Putney Jr JW (2006) Native TRPC7 channel activation by an inositol trisphosphate receptor-dependent mechanism. J Biol Chem 281:25250–25258

    Article  PubMed  CAS  Google Scholar 

  • Ver Heyen M, Heymans S, Antoons G, Reed T, Periasamy M, Awede B, Lebacq J, Vangheluwe P, Dewerchin M, Collen D, Sipido K, Carmeliet P, Wuytack F (2001) Replacement of the muscle-specific sarcoplasmic reticulum Ca2+-ATPase isoform SERCA2a by the nonmuscle SERCA2b homologue causes mild concentric hypertrophy and impairs contraction-relaxation of the heart. Circ Res 89:838–846

    Article  Google Scholar 

  • Walker RG, Willingham AT, Zuker CS (2000) Drosophila mechanosensory transduction channel. Science 287:2229–2234

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528–1537

    Article  PubMed  CAS  Google Scholar 

  • Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656

    Article  PubMed  CAS  Google Scholar 

  • Wettschureck N, Rütten H, Zywietz A, Gehring D, Wilkie TM, Chen J, Chien KR, Offermanns S (2001) Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nat Med 7:1236–1240

    Article  PubMed  CAS  Google Scholar 

  • Wilkins BJ, Dai Y-S, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94:110–118

    Article  PubMed  CAS  Google Scholar 

  • Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation of TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocytes excitation-transcription coupling. J Clin Invest 116:675–682

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JX-J (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284:C316–C330

    PubMed  CAS  Google Scholar 

  • Zhang S, Remillard CV, Fantozzi I, Yuan JX-J (2004) ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 287:1192–1201

    Article  CAS  Google Scholar 

  • Zhang S, Patel HH, Murray F, Remillard CV, Schach C, Thistlethwaite PA, Insel PA, Yuan JX-J (2007) Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 292:L1202–L1210

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671

    Article  PubMed  CAS  Google Scholar 

  • Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, Schultz G (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16:1189–1196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Kurose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, M., Kurose, H. Roles of TRP channels in the development of cardiac hypertrophy. Naunyn-Schmied Arch Pharmacol 378, 395–406 (2008). https://doi.org/10.1007/s00210-008-0321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0321-8

Keywords

Navigation