Skip to main content
Log in

Prothymosin α plays a key role in cell death mode-switch, a new concept for neuroprotective mechanisms in stroke

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

After stroke or traumatic damages, both necrotic and apoptotic neuronal death cause a loss of functions including memory, sensory perception, and motor skills. From the fact that necrosis has a nature to expand, while apoptosis to cease the cell death cascade in the brain, it is considered that the promising target for the rapid treatment for stroke is the necrosis. In this study, I introduce the discovery of prothymosin α (ProTα), which inhibits neuronal necrosis, and propose its potentiality of clinical use for stroke. First of all, it should be noted that ProTα inhibits the neuronal necrosis induced by serum-free starvation or ischemia-reperfusion stress, which causes a rapid internalization of GLUT1/4, leading a decrease in glucose uptake and cellular ATP levels. Underlying mechanisms are determined to be through an activation of Gi/o, phospholipase C and PKCβII. ProTα also causes apoptosis later through a similar mechanism. However, we found that ProTα-induced apoptosis is completely inhibited by the concomitant treatment with neurotrophins, which are up-regulated by ischemic stress in the brain. Of most importance is the finding that the systemic injection of ProTα completely inhibits the brain damages, motor dysfunction and learning memory defect induced by cerebral ischemia-reperfusion stress. As ProTα almost entirely prevents the focal ischemia-induced motor dysfunction 4 h after the start of ischemia, this protein seems to have a promising potentiality for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  • Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Albrecht J, Hanganu IL, Heck N, Luhmann HJ (2005) Oxygen and glucose deprivation induces major dysfunction in the somatosensory cortex of the newborn rat. Eur J Neurosci 22:2295–2305

    Article  PubMed  Google Scholar 

  • Ando A, Yonezawa K, Gout I, Nakata T, Ueda H, Hara K, Kitamura Y, Noda Y, Takenawa T, Hirokawa N et al (1994) A complex of GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO J 13:3033–3038

    PubMed  CAS  Google Scholar 

  • Ay I, Sugimori H, Finklestein SP (2001) Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res 87:71–80

    Article  PubMed  CAS  Google Scholar 

  • Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 97:10526–10531

    Article  PubMed  CAS  Google Scholar 

  • Bruer U, Weih MK, Isaev NK, Meisel A, Ruscher K, Bergk A, Trendelenburg G, Wiegand F, Victorov IV, Dirnagl U (1997) Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett 414:117–121

    Article  PubMed  CAS  Google Scholar 

  • Burkle A (2005) Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J 272:4576–4589

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Deshmukh M, D’Costa A, Demaro JA, Gidday JM, Shah A, Sun Y, Jacquin MF, Johnson EM, Holtzman DM (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101:1992–1999

    Article  PubMed  CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  • Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62:127–136

    PubMed  CAS  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  PubMed  CAS  Google Scholar 

  • Evstafieva AG, Belov GA, Kalkum M, Chichkova NV, Bogdanov AA, Agol VI, Vartapetian AB (2000) Prothymosin alpha fragmentation in apoptosis. FEBS Lett 467:150–154

    Article  PubMed  CAS  Google Scholar 

  • Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263

    Article  PubMed  CAS  Google Scholar 

  • Fujita R, Ueda H (2003a) Protein kinase C-mediated cell death mode switch induced by high glucose. Cell Death Differ 10:1336–1347

    Article  PubMed  CAS  Google Scholar 

  • Fujita R, Ueda H (2003b) Protein kinase C-mediated necrosis-apoptosis switch of cortical neurons by conditioned medium factors secreted under the serum-free stress. Cell Death Differ 10:782–790

    Article  PubMed  CAS  Google Scholar 

  • Fujita R, Ueda H (2007) Prothymosin-alpha1 prevents necrosis and apoptosis following stroke. Cell Death Differ 14:1839–1842

    Article  PubMed  CAS  Google Scholar 

  • Fujita R, Yoshida A, Mizuno K, Ueda H (2001) Cell density-dependent death mode switch of cultured cortical neurons under serum-free starvation stress. Cell Mol Neurobiol 21:317–324

    Article  PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54:271–284

    Article  PubMed  CAS  Google Scholar 

  • Gladstone DJ, Black SE, Hakim AM (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136

    Article  PubMed  Google Scholar 

  • Ha HC, Snyder SH (2000) Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiol Dis 7:225–239

    Article  PubMed  CAS  Google Scholar 

  • Heales SJ, Bolanos JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg S, Wang X (2003) Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299:223–226

    Article  PubMed  CAS  Google Scholar 

  • Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    Article  PubMed  CAS  Google Scholar 

  • Kintner DB, Luo J, Gerdts J, Ballard AJ, Shull GE, Sun D (2007) Role of Na+-K+-Cl-cotransport and Na+/Ca2 + exchange in mitochondrial dysfunction in astrocytes following in vitro ischemia. Am J Physiol Cell Physiol 292:C1113–C1122

    Article  PubMed  CAS  Google Scholar 

  • Krause GS, Kumar K, White BC, Aust SD, Wiegenstein JG (1986) Ischemia, resuscitation, and reperfusion: mechanisms of tissue injury and prospects for protection. Am Heart J 111:768–780

    Article  PubMed  CAS  Google Scholar 

  • Lai AY, Todd KG (2006) Microglia in cerebral ischemia: molecular actions and interactions. Can J Physiol Pharmacol 84:49–59

    Article  PubMed  CAS  Google Scholar 

  • Li W, Yuan XM, Ivanova S, Tracey KJ, Eaton JW, Brunk UT (2003) 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem J 371:429–436

    Article  PubMed  CAS  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  • Loh KP, Huang SH, De Silva R, Tan BK, Zhu YZ (2006) Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res 3:327–337

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga H, Ueda H (2006a) Evidence for serum-deprivation-induced co-release of FGF-1 and S100A13 from astrocytes. Neurochem Int 49:294–303

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga H, Ueda H (2006b) Voltage-dependent N-type Ca2 + channel activity regulates the interaction between FGF-1 and S100A13 for stress-induced non-vesicular release. Cell Mol Neurobiol 26:237–246

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Kohsaka S (2004) Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 4:65–84

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280

    Article  PubMed  CAS  Google Scholar 

  • Pineiro A, Cordero OJ, Nogueira M (2000) Fifteen years of prothymosin alpha: contradictory past and new horizons. Peptides 21:1433–1446

    Article  PubMed  CAS  Google Scholar 

  • Slee EA, Zhu H, Chow SC, MacFarlane M, Nicholson DW, Cohen GM (1996) Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J. 315(Pt 1):21–24

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    Article  PubMed  CAS  Google Scholar 

  • Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257–264

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Weber ML, Gaughan CL, Lehning EJ, LoPachin RM (1999) Oxygen/glucose deprivation in hippocampal slices: altered intraneuronal elemental composition predicts structural and functional damage. J Neurosci 19:619–629

    PubMed  CAS  Google Scholar 

  • The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 333:1581–1587

    Article  Google Scholar 

  • Tsujimoto Y (2002) Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci Rep 22:47–58

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195:158–167

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Fujita R (2004) Cell death mode switch from necrosis to apoptosis in brain. Biol Pharm Bull 27:950–955

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Fujita R, Koji T, Ueda H (2004) The cognition-enhancer nefiracetam inhibits both necrosis and apoptosis in retinal ischemic models in vitro and in vivo. J Pharmacol Exp Ther 309(1):200–207

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Fujita R, Yoshida A, Matsunaga H, Ueda M (2007) Identification of prothymosin-alpha1, the necrosis-apoptosis switch molecule in cortical neuronal cultures. J Cell Biol 176:853–862

    Article  PubMed  CAS  Google Scholar 

  • Watson RT, Pessin JE (2001) Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog Horm Res 56:175–193

    Article  PubMed  CAS  Google Scholar 

  • Watson RT, Pessin JE (2006) Bridging the GAP between insulin signaling and GLUT4 translocation. Trends Biochem Sci 31:215–222

    Article  PubMed  CAS  Google Scholar 

  • White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Sawamoto K, Suzuki S, Suzuki N, Adachi K, Kawase T, Mihara M, Ohsugi Y, Abe K, Okano H (2005) Blockade of interleukin-6 signaling aggravates ischemic cerebral damage in mice: possible involvement of Stat3 activation in the protection of neurons. J Neurochem 94:459–468

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Tomioka I, Nagahara T, Holyst T, Sawada M, Hayes P, Gama V, Okuno M, Chen Y, Abe Y, Kanouchi T, Sasada H, Wang D, Yokota T, Sato E, Matsuyama S (2004) Bax-inhibiting peptide derived from mouse and rat Ku70. Biochem Biophys Res Commun 321:961–966

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Fearnhead HO, Cohen GM (1995) An ICE-like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP.1 cells. FEBS Lett 374:303–308

    Article  PubMed  CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I cordially thank Dr Ryousuke Fujita for the great contribution to this study and manuscript. This study was supported by the Grants-in-Aid for Scientific Research (to H.U., B: 13470490 and B: 15390028) on Priority Areas—Research on Pathomechanisms of Brain Disorders (to H.U., 17025031) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Encouragement of Young Scientists (to R.F., B: 17790066) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, H. Prothymosin α plays a key role in cell death mode-switch, a new concept for neuroprotective mechanisms in stroke. Naunyn-Schmied Arch Pharmacol 377, 315–323 (2008). https://doi.org/10.1007/s00210-007-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0254-7

Keywords

Navigation