Skip to main content
Log in

Intracellular mechanisms and receptor types for endothelin-1-induced positive and negative inotropy in mouse ventricular myocardium

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We examined the intracellular mechanisms for endothelin-1-induced positive and negative inotropic components that coexist in the mouse ventricular myocardium using isolated ventricular tissue and myocytes from 4-week-old mice. In the presence of SEA0400, a specific inhibitor of the Na+–Ca2+ exchanger, endothelin-1 produced positive inotropy. Endothelin-1, when applied to cardiomyocytes in the presence of SEA0400, did not change the peak amplitude of the Ca2+ transient but increased intracellular pH and Ca2+ sensitivity of contractile proteins. On the other hand, in the presence of dimethylamiloride (DMA), a specific inhibitor of the Na+–H+ exchanger, endothelin-1 produced negative inotropy. In cardiomyocytes, in the presence of DMA, endothelin-1 produced a decrease in peak amplitude of the Ca2+ transient. In the presence of both DMA and SEA0400, endothelin-1 produced neither positive nor negative inotropy. Positive inotropy was blocked by BQ-123 and negative inotropy by BQ-788. These results suggested that endothelin-1-induced positive inotropy is mediated by ETA receptors, activation of the Na+–H+ exchanger and an increase in intracellular pH and Ca2+ sensitivity and that the negative inotropy is mediated by ETB receptors, activation of the Na+–Ca2+ exchanger and decrease in Ca2+ transient amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Fiolet JW (2003) Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Barth E, Stammler G, Speiser B, Schaper J (1992) Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 24:669–681

    Article  PubMed  CAS  Google Scholar 

  • Bassnett S, Reinisch L, Beebe D (1990) Intracellular pH measurement using single excitation-dual emission fluorescence ratios. Am J Physiol 258:C171–C178

    PubMed  CAS  Google Scholar 

  • Bers D (2002) Cardiac Na+/Ca2+ exchange function in rabbit, mouse and man: what’s the difference? J Mol Cell Cardiol 34:369–373

    Article  PubMed  CAS  Google Scholar 

  • Bers D, Despa S (2006) Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci 100:315–322

    Article  PubMed  CAS  Google Scholar 

  • Binah O, Arieli R, Beck R, Rosen MR, Palti Y (1987) Ventricular electrophysiological properties: is interspecies variability related to thyroid state? Am J Physiol 252:H1265–H1274

    PubMed  CAS  Google Scholar 

  • Blank S, Chen V, Hamilton N, Salemo T, Ianuzzo C (1989) Biochemical characteristics of mammalian myocardia. J Mol Cell Cardiol 21:367–373

    Article  PubMed  CAS  Google Scholar 

  • Chess-Williams R, Broadley K (1987) Examination of cardiac alpha-adrenoceptors from pharmacological responses and radioligand binding. Comparison of rat and guinea pig tissues. J Pharmacol Methods 18:111–122

    Article  PubMed  CAS  Google Scholar 

  • Chu L, Takahashi R, Norota I, Miyamoto T, Takeishi Y, Ishii K, Kubota I, Endoh M (2003) Signal transduction and Ca2+ signaling in contractile regulation induced by crosstalk between endothelin-1 and norepinephrine in dog ventricular myocardium. Circ Res 92:1024–1032

    Article  PubMed  CAS  Google Scholar 

  • Chu L, Norota I, Yomogida S, Ishii K, Endoh M (2004) Differential inotropic effects of endothelin-1, angiotensin II, and phenylephrine induced by crosstalk with cAMP-mediated signaling process in dog ventricular myocardium. J Pharmacol Sci 96:199–207

    Article  PubMed  CAS  Google Scholar 

  • Endoh M (2006) Signal transduction and Ca2+ signaling in intact myocardium. J Pharmacol Sci 100:525–537

    Article  PubMed  CAS  Google Scholar 

  • Fujiki S, Takeda K, Moriwaki R, Shimizu Y, Kazama A, Namekata A, Kawanishi T, Tanaka H, Shigenobu K (2006) Intracellular mechanisms for the endothelin-induced negative and positive inotropy in adult mouse ventricle. J Pharmacol Sci 100:224P

    Google Scholar 

  • Gray G, Webb D (1996) The endothelin system and its potential as a therapeutic target in cardiovascular disease. Pharmacol Ther 72:109–148

    Article  PubMed  CAS  Google Scholar 

  • Hamilton N, Ianuzzo C (1991) Contractile and calcium regulating capacities of myocardia of different sized mammals scale with resting heart rate. Mol Cell Biochem 106:133–141

    Article  PubMed  CAS  Google Scholar 

  • Hobai IA, O’Rourke B (2000) Enhanced Ca2+-activated Na+–Ca2+ exchange activity in canine pacing-induced heart failure. Circ Res 87:690–698

    PubMed  CAS  Google Scholar 

  • Hongo K, Kusakari Y, Kawai M, Konishi M, Kurihara S, Mochizuki S (2002) Use of tetanus to investigate myofibrillar responsiveness to Ca2+ in isolated mouse ventricular myocytes. Jpn J Physiol 52:121–127

    Article  PubMed  CAS  Google Scholar 

  • Hurtado C, Ander BP, Maddaford TG, Lukas A, Hrysko LV, Pierce GN (2005) Adenovirally delivered shRNA strongly inhibits Na+–Ca2+ exchanger expression but does not prevent contraction of neonatal cardiomyocytes. J Mol Cell Cardiol 38:647–654

    Article  PubMed  CAS  Google Scholar 

  • Ihara M, Ishikawa K, Fukuroda T, Saeki T, Funabashi K, Fukami T, Suda H, Yano M (1992) In vitro biological profile fo a highly potent novel endothelin (et) antagonist BQ-123 selective for the ETA receptor. J Cardiovasc Pharmacol 20(Suppl 12):S11–S14

    PubMed  CAS  Google Scholar 

  • Ishikawa K, Ihara M, Noguchi K, Mase T, Mino N, Saeki T, Fukuroda T, fukami T, Ozaki S, Nagase T, Nihikibe M, Yano M (1994) Biochemical and pharmacological profile of a potent and selective endothelin B-receptor antagonist, BQ-788. Proc Natl Acad Sci USA 91:4892–4896

    Article  PubMed  CAS  Google Scholar 

  • Izumi M, Miyamoto S, Hori M, Ozaki H, Karaki H (2000) Negative inotropic effect of endothelin-1 in the mouse right ventricle. Eur J Pharmacol 396:109–117

    Article  PubMed  CAS  Google Scholar 

  • Kelso EJ, McDermott BJ, Silke B, Spiers JP (2000) Endothelin A receptor subtype mediates endothelin-induced contractility in left ventricular cardiomyocytes isolated from rabbit myocardium. J Pharmacol Exp Ther 294:1047–1052

    PubMed  CAS  Google Scholar 

  • Kramer B, Smith T, Kelly R (1991) Endothelin and increased contractility in adult rat ventricular myocytes. Role of intracellular alkalosis induced by activation of the protein kinase C-dependent Na+–H+ exchanger. Circ Res 68:269–279

    PubMed  CAS  Google Scholar 

  • Lauer M, Gunn M, Clusin W (1992) Endothelin activates voltage-dependent Ca2+ current by a G protein-dependent mechanism in rabbit cardiac myocytes. J Physiol 448:729–747

    PubMed  CAS  Google Scholar 

  • MacCarthy P, Grocott-Mason R, Prendergast B, Shah A (2000) Contrasting inotropic effects of endogenous endothelin in the normal and failing human heart: studies with an intracoronary ET(A) receptor antagonist. Circulation 101:142–147

    PubMed  CAS  Google Scholar 

  • Malo ME, Fliegel L (2006) Physiological role and regulation of the Na+/H+ exchanger. Can J Physiol Pharmacol 84:1081–1095

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Arakawa N, Takuma K, Kishida Y, Kawasaki Y, Sakaue M, Takahashi K, Takahashi T, Suzuki T, Ota T, Hamano-Takahashi A, Onishi M, Tanaka Y, Kameo K, Baba A (2001) SEA0400, a novel and selective inhibitor of the Na+–Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298:249–256

    PubMed  CAS  Google Scholar 

  • Matsui H, Barry WH, Livsey C, Spitzer KW (1995) Angiotensin II stimulates sodium-hydrogen exchange in adult rabbit ventricular myocytes. Cardiovasc Res 29:215–221

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka T, Izumi M, Hori M, Ozaki H, Karaki H (2003) Positive inotropic effect of endothelin-1 in the neonatal mouse right ventricle. Eur J Pharmacol 472:197–204

    Article  PubMed  CAS  Google Scholar 

  • Namekata I, Kawanishi T, Iida-Tanaka N, Tanaka H, Shigenobu K (2006) Quantitative fluorescence measurement of cardiac Na+/Ca2+ exchanger inhibition by kinetic analysis in stably transfected HEK293 cells. J Pharmacol Sci 101:356–360

    Article  PubMed  CAS  Google Scholar 

  • Nishimaru K, Tanaka Y, Tanaka H, Shigenobu K (2000) Positive and negative inotropic effects of muscarinic receptor stimulation in mouse left atria. Life Sci 66:607–615

    Article  PubMed  CAS  Google Scholar 

  • Nishimaru K, Kobayashi M, Matsuda T, Tanaka Y, Tanaka H, Shigenobu K (2001) Alpha-Adrenoceptor stimulation-mediated negative inotropism and enhanced Na+/Ca2+ exchange in mouse ventricle. Am J Physiol Heart Circ Physiol 280:H132–H141

    PubMed  CAS  Google Scholar 

  • Nishimaru K, Tanaka Y, Tanaka H, Shigenobu K (2003) Pharmacological evidence for involvement of phospholipase D, protein kinase C, and sodium–calcium exchanger in alpha-adrenoceptor-mediated negative inotropy in adult mouse ventricle. J Pharmacol Sci 92:196–202

    Article  PubMed  CAS  Google Scholar 

  • Nishimaru K, Miura Y, Endoh M (2007) Mechanisms of endothelin-1-induced decrease in contractility in adult mouse ventricular myocytes. Br J Pharmacol 152:456–463

    Article  PubMed  CAS  Google Scholar 

  • Orchard CH, Kentish JC (1990) Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol 258:C967–C981

    PubMed  CAS  Google Scholar 

  • Penna C, Rastaldo R, Mancardi D, Cappello S, Pagliaro P, Westerhof N, Losano G (2006) Effect of endothelins on the cardiovascular system. J Cardiovas Med 7:645–652

    Article  Google Scholar 

  • Piuhola J, Makinen M, Szokodi I, Ruskoaho H (2003) Dual role of endothelin-1 via ETA and ETB receptors in regulation of cardiac contractile function in mice. Am J Physiol 285:H112–H118

    CAS  Google Scholar 

  • Reuter H, Henderson SA, Han T, Mottino GA, Frank JS, Ross RS, Goldhaber JI, Philipson KD (2003) Cardiac excitation–contraction coupling in the absence of Na+–Ca2+ exchange. Cell Calcium 34:19–26

    Article  PubMed  CAS  Google Scholar 

  • Sakurai K, Norota I, Tanaka H, Kubota I, Tomoike H, Endoh M (2002) Negative inotropic effects of angiotensin II, endothelin-1 and phenylephrine in indo-1 loaded adult mouse ventricular myocytes. Life Sci 70:1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Sekine T, Kusano H, Nishimaru K, Tanaka Y, Tanaka H, Shigenobu K (1999) Developmental conversion of inotropism by endothelin I and angiotensin II from positive to negative in mice. Eur J Pharmacol 374:411–415

    Article  PubMed  CAS  Google Scholar 

  • Sipido KR, Volders PG, Vos MA, Verdonck F (2002) Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc Res 53:782–805

    Article  PubMed  CAS  Google Scholar 

  • Takanashi M, Endoh M (1991) Characterization of positive inotropic effect of endothelin on mammalian ventricular myocardium. Am J Physiol 261:H611–H619

    PubMed  CAS  Google Scholar 

  • Takahashi S, Kato Y, Adachi M, Agata N, Tanaka H, Shigenobu K (1995) Effects of cyclopiazonic acid on rat myocardium: inhibition of calcium uptake into sarcoplasmic reticulum. J Pharmacol Exp Ther 272:1095–1100

    PubMed  CAS  Google Scholar 

  • Tanaka H, Manita S, Shigenobu K (1994) Increased sensitivity of neonatal mouse myocardia to autonomic transmitters. J Auton Pharmacol 14:123–128

    PubMed  CAS  Google Scholar 

  • Tanaka H, Manita S, Matsuda T, Adachi M, Shigenobu K (1995a) Sustained negative inotropism mediated by alpha-adrenoceptors in adult mouse myocardia: developmental conversion from positive response in the neonate. Br J Pharmacol 114:673–677

    PubMed  CAS  Google Scholar 

  • Tanaka H, Matsuda T, Adachi M, Shigenobu K (1995b) Effect of sympathectomy on inotropic responsiveness to α-adrenoceptor stimulation in developing mouse myocardia. Can J Physiol Pharmacol 73:1285–1288

    PubMed  CAS  Google Scholar 

  • Tanaka H, Kawanishi T, Kato Y, Nakamura R, Shigenobu K (1996) Restricted propagation of cytoplasmic Ca2+ oscillation into the nucleus in guinea pig cardiac myocytes as revealed by rapid scanning confocal microscopy and indo-1. Jpn J Pharmacol 70:235–242

    PubMed  CAS  Google Scholar 

  • Tanaka H, Sekine T, Nishimaru K, Shigenobu K (1998) Role of sarcoplasmic reticulum in myocardial contraction of neonatal and adult mice. Comp Biochem Physiol A 120:431–438

    Article  CAS  Google Scholar 

  • Tanaka H, Nishimaru K, Kobayashi M, Matsuda T, Tanaka Y, Shigenobu K (2001) Acetylcholine-induced positive inotropy mediated by prostaglandin released from endocardial endothelium in mouse left atrium. Nauny-Schmied Arch Pharmacol 363:577–582

    Article  CAS  Google Scholar 

  • Tanaka H, Nishimaru K, Aikawa T, Hirayama W, Tanaka Y, Shigenobu K (2002) Effect of SEA0400, a novel inhibitor of sodium–calcium exchanger, on myocardial ionic currents. Br J Pharmacol 135:1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Nishimaru K, Makuta R, Hirayama W, Kawamura T, Matsuda T, Tanaka Y, Kawanishi T, Shigenobu K (2003) Possible involvement of prostaglandins F2α and D2 in acetylcholine-induced positive inotropy in isolated mouse left atria. Pharmacology 67:157–162

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Komikado C, Shimada H, Takeda K, Namekata I, Kawanishi T, Shigenobu K (2004) The R(−)-enantiomer of efonidipine blocks T-type but not L-type calcium current in guinea pig ventricular myocardium. J Pharmacol Sci 96:499–501

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Namekata I, Takeda K, Kazama A, Shimizu Y, Moriwaki R, Hirayama W, Sato A, Kawanishi T, Shigenobu K (2005) Unique excitation–contraction characteristics of mouse myocardium as revealed by SEA0400, a specific inhibitor of Na+–Ca2+ exchanger. Nauny-Schmied Arch Pharmacol 371:526–534

    Article  CAS  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was partly performed as a part of the project Research on the Molecular Mechanisms of Appearance of Age-related Diseases by Failure of Cell Function Control System, and their Prevention and Treatment by the Research Center for Aging and Age-related Diseases established in the Toho University Faculty of Pharmaceutical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikaru Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namekata, I., Fujiki, S., Kawakami, Y. et al. Intracellular mechanisms and receptor types for endothelin-1-induced positive and negative inotropy in mouse ventricular myocardium. Naunyn-Schmied Arch Pharmacol 376, 385–395 (2008). https://doi.org/10.1007/s00210-007-0228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0228-9

Keywords

Navigation