Skip to main content
Log in

Down-regulation of TRPM6-mediated magnesium influx by cyclosporin A

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Transient receptor potential melastatin 6 (TRPM6) is distributed along the apical membrane of the renal tubular cells and is involved in the reabsorption of magnesium. In this study, we show that TRPM6 expression is suppressed by cyclosporin A (CsA) via a down-regulation of c-Fos expression. TRPM6 was expressed in NRK-52E, but not in Madin-Darby canine kidney cells. In contrast, its homolog, TRPM7, was equally expressed in both cells. In NRK-52E cells, CsA dose-dependently decreased TRPM6 expression without affecting TRPM7 expression. Magnesium load measurements revealed the rise in the intracellular free magnesium concentration ([Mg2+]i) to be inhibited by CsA. The transfection of TRPM6 siRNA decreased TRPM6 expression without affecting TRPM7 expression and inhibited the elevation of [Mg2+]i. CsA did not affect the intracellular distribution of nuclear factor of activated T cells (NFATc). Furthermore, TRPM6 expression was not changed by a NFATc inhibitor. Next, we examined the effect of CsA on the transcription factors c-Fos and c-Jun. CsA decreased c-Fos expression without affecting c-Jun expression. The transfection of c-Fos siRNA suppressed TRPM6 expression without affecting TRPM7 expression. We suggest that CsA decreases TRPM6 expression mediated by inhibition of c-Fos transcription, resulting in a decrease of renal Mg2+ reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CsA:

cyclosporin A

NFATc:

nuclear factor of activated T cells

[Mg2+]i :

intracellular free magnesium concentration

TRPM6:

transient receptor potential melastatin 6

References

  • Andoh TF, Burdmann EA, Fransechini N, Houghton DC, Bennett WM (1996) Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506. Kidney Int 50:1110–1117

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Nakatani T, Yamanaka S, Tamada S, Kishimoto T, Tashiro K, Nakao T, Okamura M, Kim S, Iwao H, Miura K (2002) Magnesium supplementation prevents experimental chronic cyclosporine a nephrotoxicity via renin-angiotensin system independent mechanism. Transplantation 74:784–791

    Article  PubMed  CAS  Google Scholar 

  • Barton CH, Vaziri ND, Martin DC, Choi S, Alikhani S (1987) Hypomagnesemia and renal magnesium wasting in renal transplant recipients receiving cyclosporine. Am J Med 83:693–699

    Article  PubMed  CAS  Google Scholar 

  • Bennett WM (1995) The nephrotoxicity of immunosuppressive drugs. Clin Nephrol 43(Suppl 1):S3–S7

    PubMed  Google Scholar 

  • Chubanov V, Waldegger S, Mederos y Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA 101:2894–2899

    Article  PubMed  CAS  Google Scholar 

  • Cole DE, Quamme GA (2000) Inherited disorders of renal magnesium handling. J Am Soc Nephrol 11:1937–1947

    PubMed  CAS  Google Scholar 

  • Flanagan WM, Corthésy B, Bram RJ, Crabtree GR (1991) Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352:803–807

    Article  PubMed  CAS  Google Scholar 

  • Frigo DE, Tang Y, Beckman BS, Scandurro AB, Alam J, Burow ME, McLachlan JA (2004) Mechanism of AP-1-mediated gene expression by select organochlorines through the p38 MAPK pathway. Carcinogenesis 25:249–261

    Article  PubMed  CAS  Google Scholar 

  • Goytain A, Quamme GA (2005a) Functional characterization of the human solute carrier, SLC41A2. Biochem Biophys Res Commun 330:701–705

    Article  PubMed  CAS  Google Scholar 

  • Goytain A, Quamme GA (2005b) Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters. Physiol Genomics 21:337–342

    Article  PubMed  CAS  Google Scholar 

  • Groenestege WM, Hoenderop JG, van den Heuvel L, Knoers N, Bindels RJ (2006) The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. J Am Soc Nephrol 17:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Ikari A, Nakajima K, Kawano K, Suketa Y (2001) Polyvalent cation-sensing mechanism increased Na+-independent Mg2+ transport in renal epithelial cells. Biochem Biophys Res Commun 287:671–674

    Article  PubMed  CAS  Google Scholar 

  • Ikari A, Hirai N, Shiroma M, Harada H, Sakai H, Hayashi H, Suzuki Y, Degawa M, Takagi K (2004) Association of paracellin-1 with ZO-1 augments the reabsorption of divalent cations in renal epithelial cells. J Biol Chem 279:54826–54832

    Article  PubMed  CAS  Google Scholar 

  • Kahan BD (1989) Cyclosporine. N Engl J Med 321:1725–1738

    Article  PubMed  CAS  Google Scholar 

  • Kiely B, Feldman G, Ryan MP (2003) Modulation of renal epithelial barrier function by mitogen-activated protein kinases (MAPKs): mechanism of cyclosporine A-induced increase in transepithelial resistance. Kidney Int 63:908–916

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Kang HS, Jeong CW, Park SY, Kim IS, Kim NS, Kim SZ, Kwak YG, Kim JS, Quamme GA (2006) Immunosuppressants inhibit hormone-stimulated Mg2+ uptake in mouse distal convoluted tubule cells. Biochem Biophys Res Commun 341:742–748

    Article  PubMed  CAS  Google Scholar 

  • Konrad M, Schlingmann KP, Gudermann T (2004) Insights into the molecular nature of magnesium homeostasis. Am J Physiol Renal Physiol 286:F599–F605

    Article  PubMed  CAS  Google Scholar 

  • Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Albers MW, Wandless TJ, Luan S, Alberg DG, Belshaw PJ, Cohen P, MacKintosh C, Klee CB, Schreiber SL (1992) Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry 31:3896–3901

    Article  PubMed  CAS  Google Scholar 

  • Matsuda S, Moriguchi T, Koyasu S, Nishida E (1998) T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J Biol Chem 273:12378–12382

    Article  PubMed  CAS  Google Scholar 

  • McDiarmid SV, Colonna JO, Shaked A, Ament ME, Busuttil RW (1993) A comparison of renal function in cyclosporine- and FK-506-treated patients after primary orthotopic liver transplantation. Transplantation 56:847–853

    Article  PubMed  CAS  Google Scholar 

  • Myers BD, Ross J, Newton L, Luetscher J, Perlroth M (1984) Cyclosporine-associated chronic nephropathy. N Engl J Med 311:699–705

    Article  PubMed  CAS  Google Scholar 

  • Nijenhuis T, Hoenderop JG, Bindels RJ (2004) Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol 15:549–557

    Article  PubMed  CAS  Google Scholar 

  • Noguchi H, Matsushita M, Okitsu T, Moriwaki A, Tomizawa K, Kang S, Li ST, Kobayashi N, Matsumoto S, Tanaka K, Tanaka N, Matsui H (2004) A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat Med 10:305–309

    Article  PubMed  CAS  Google Scholar 

  • Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52:1180–1195

    Article  PubMed  CAS  Google Scholar 

  • Remuzzi G, Perico N (1995) Cyclosporine-induced renal dysfunction in experimental animals and humans. Kidney Int Suppl 52:S70–S74

    PubMed  CAS  Google Scholar 

  • Rincón M, Flavell RA (1994) AP-1 transcriptional activity requires both T-cell receptor-mediated and co-stimulatory signals in primary T lymphocytes. EMBO J 13:4370–4381

    PubMed  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  • Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    Article  PubMed  CAS  Google Scholar 

  • Taque S, Peudenier S, Gie S, Rambeau M, Gandemer V, Bridoux L, Bétrémieux P, De Parscau L, Le Gall E (2004) Central neurotoxicity of cyclosporine in two children with nephrotic syndrome. Pediatr Nephrol 19:276–280

    Article  PubMed  Google Scholar 

  • Touyz RM, He Y, Montezano AC, Yao G, Chubanov V, Gudermann T, Callera GE (2006) Differential regulation of transient receptor potential melastatin 6 and 7 cation channels by ANG II in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol, Regul Integr Comp Physiol 290:R73–R78

    CAS  Google Scholar 

  • Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25

    Article  PubMed  CAS  Google Scholar 

  • Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Education, Science, Sports, and Culture of Japan, a grant-in-aid for Encouragement of Young Scientists (to A.I.), and by grants from the Ichiro Kanehara Foundation, the Salt Science Research Foundation, no. 0633, and the SRI academic Research Grant (to A.I.). Akira Ikari and Chiaki Okude contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ikari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikari, A., Okude, C., Sawada, H. et al. Down-regulation of TRPM6-mediated magnesium influx by cyclosporin A. Naunyn-Schmied Arch Pharmacol 377, 333–343 (2008). https://doi.org/10.1007/s00210-007-0212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0212-4

Keywords

Navigation