Skip to main content
Log in

Activation of inwardly rectifying Kir2.x potassium channels by β3-adrenoceptors is mediated via different signaling pathways with a predominant role of PKC for Kir2.1 and of PKA for Kir2.2

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

β3-adrenoceptors have recently been shown to induce a complex modulation of intracellular signaling pathways including cyclic guanine monophosphate, cyclic adenosine monophosphate, Nitric oxide, and protein kinases A and C. They are expressed in a broad variety of tissues including the myocardium, vascular smooth muscle, and endothelium. In those tissues, resting membrane potential is controlled mainly by inwardly rectifying potassium channels of the Kir2 family namely, Kir2.1 in the vascular smooth muscle, Kir2.1–2.3 in the myocardium, and Kir2.1–2.2 in the endothelium. In the present study, we investigated the possible modulation of Kir2 channel function by β3-adrenoceptors in an expression system. Human-cloned β3-adrenoceptors and Kir2.1 (KCNJ2), Kir2.2 (KCNJ12), and Kir2.3 (KCNJ4) channels were coexpressed in Xenopus oocytes, and currents were measured with double-microelectrode voltage clamp. Activation of β3-adrenoceptors with isoproterenol resulted in markedly increased currents in Kir2.1 and in Kir2.2 potassium channels with EC50 values of 27 and 18 nM, respectively. In contrast, Kir2.3 currents were not modulated. Coapplication of specific inhibitors of protein kinase A (KT-5720) and calmodulin kinase II (KN-93) had no effects on the observed regulation in Kir2.1. However, coapplication of protein kinase C (PKC) inhibitors staurosporine and chelerythrine suppressed the observed effect. In Kir2.2, coapplication of KT-5720 reduced the effect of β3-adrenoceptor activation. No differences in current increase after application of isoproterenol were observed between mutant Kir2.2 potassium channels lacking all functional PKC phosphorylation sites and Kir2.2 wild-type channels. In heteromeric Kir2.x channels, all types of heteromers were activated. The effect was most pronounced in Kir2.1/Kir2.2 and in Kir2.2/Kir2.3 channels. In summary, homomeric and heteromeric Kir2.x channels are activated by β3-adrenoceptors via different protein kinase-dependent pathways: Kir2.1 subunits are modulated by PKC, whereas Kir2.2 is modulated by protein kinase A. In heteromeric composition, a marked activation of currents can be observed particularly with involvement of Kir2.2 subunits. This regulation may contribute to the hyperpolarizing effects of β3-adrenoceptors in tissues that exhibit modulation by Kir2 channel function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anthony A, Schepelmann S, Guillaume JL, Strosberg AD, Dhillon AP, Pounder RE, Wakefield AJ (1998) Localization of the beta(beta)3-adrenoceptor in the human gastrointestinal tract: an immunohistochemical study. Aliment Pharmacol Ther 12:519–525

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz DE, Nardone NA, Smiley RM, Price DT, Kreutter DK, Fremeau RT, Schwinn DA (1995) Distribution of beta 3-adrenoceptor mRNA in human tissues. Eur J Pharmacol 289:223–228

    Article  PubMed  CAS  Google Scholar 

  • Bosch RF, Schneck AC, Kiehn J, Zhang W, Hambrock A, Eigenberger BW, Rub N, Gogel J, Mewis C, Seipel L, Kuhlkamp V (2002) β3-Adrenergic regulation of an ion channel in the heart—inhibition of the slow delayed rectifier potassium current IKs in guinea pig ventricular myocytes. Cardiovasc Res 56:393–403

    Article  PubMed  CAS  Google Scholar 

  • Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651–690

    PubMed  CAS  Google Scholar 

  • Brodde OE, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci 100:323–337

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain PD, Jennings KH, Paul F, Cordell J, Berry A, Holmes SD, Park J, Chambers J, Sennitt MV, Stock MJ, Cawthorne MA, Young PW, Murphy GJ (1999) The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes 23:1057–1065

    Article  CAS  Google Scholar 

  • Couldwell WT, Hinton D, He S, Chen TC, Sebat I, Weiss MH, Law RE (1994) Protein kinase C inhibitors induce apoptosis in human malignant glioma cell lines. FEBS Lett 345:43–46

    Article  PubMed  CAS  Google Scholar 

  • Dhamoon AS, Pandit SV, Sarmast F, Parisian KR, Guha P, Li Y, Bagwe S, Taffet SM, Anumonwo JM (2004) Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ Res 94:1332–1339

    Article  PubMed  CAS  Google Scholar 

  • Dessy C, Moniotte S, Ghisdal P, Havaux X, Noirhomme P, Balligand JL (2004) Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation 110:948–954

    Article  PubMed  CAS  Google Scholar 

  • Dessy C, Saliez J, Ghisdal P, Daneau G, Lobysheva II, Frerart F, Belge C, Jnaoui K, Noirhomme P, Feron O, Balligand JL (2005) Endothelial beta3-adrenoceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation 112:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Fakler B, Brändle U, Glowatzki E, Zenner HP, Ruppersberg JP (1994) Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron 13:1413–1420

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Schram G, Romanenko VG, Shi C, Conti L, Vandenberg CA, Davies PF, Nattel S, Levitan I (2005) Functional expression of Kir2.x in human aortic endothelial cells: the dominant role of Kir2.2. Am J Physiol Cell Physiol 289:C1134–C1144

    Article  PubMed  CAS  Google Scholar 

  • Ferro A (2006) B-Adrenoceptors and potassium channels. Naunyn-Schmiedeberg’s Arch Pharmacol 373:183–185

    Article  CAS  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional β3-adrenoceptor in the human heart. J Clin Invest 98:556–562

    PubMed  CAS  Google Scholar 

  • Gauthier C, Tavernier G, Trochu JN, Leblais V, Laurent K, Langin D, Escande D, Le Marec H (1999) Interspecies differences in the cardiac negative inotropic effects of β3-adrenoceptor agonists. J Pharmacol Exp Ther 290:687–693

    PubMed  CAS  Google Scholar 

  • Gauthier C, Langin D, Balligand JL (2000) Beta3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431

    Article  PubMed  CAS  Google Scholar 

  • Henry P, Pearson WL, Nichols CG (1996) Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K+ channels expressed in Xenopus oocytes. J Physiol 495:681–688

    PubMed  CAS  Google Scholar 

  • Jantzi MC, Brett SE, Jackson WF, Corteling R, Vigmond EJ, Welsh DG (2006) Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries. Am J Physiol Heart Circ Physiol 291:H1319–H1328

    Article  PubMed  CAS  Google Scholar 

  • Karle CA, Zitron E, Zhang W, Wendt-Nordahl G, Kathöfer S, Thomas D, Gut B, Scholz E, Vahl CF, Katus HA, Kiehn J (2002) Human cardiac inwardly-rectifying K+ channel Kir2.1b is inhibited by direct protein kinase C-dependent regulation in human isolated cardiomyocytes and in an expression system. Circulation 106:1493–1499

    Article  PubMed  CAS  Google Scholar 

  • Kathöfer S, Zhang W, Karle C, Thomas D, Schoels W, Kiehn J (2000) Functional coupling of human β3-adrenoceptors to the KvLQT1/minK potassium channel. J Biol Chem 275:26743–26747

    PubMed  Google Scholar 

  • Kathöfer S, Röckl K, Zhang W, Thomas D, Katus H, Kiehn J, Kreye V, Schoels W, Karle C (2003) Human β3-adrenoceptors couple to KvLQT/minK potassium channels in Xenopus oocytes via protein kinase C phosphorylation of the KvLQT1 protein. Naunyn-Schmiedeberg’s Arch Pharmacol 368:119–126

    Article  CAS  Google Scholar 

  • Kiesecker C, Zitron E, Scherer D, Lück S, Bloehs R, Scholz EP, Pirot M, Kathöfer S, Thomas D, Kreye VA, Kiehn J, Borst MM, Katus HA, Schoels W, Karle CA (2006) Regulation of cardiac inwardly rectifying potassium current IK1 and Kir2.x channels by endothelin-1. J Mol Med 84:46–56

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Liang GH, Kim JA, Park SH, Hah JS, Suh SH (2005) Contribution of Na+–K+-pump and Kir currents to extracellular pH dependent changes of contractility in rat superior mesenteric artery. Am J Physiol Heart Circ Physiol 289:H792–H800

    Article  PubMed  CAS  Google Scholar 

  • Koumi S, Backer CL, Arentzen CE, Sato R (1995a) β-adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. J Clin Invest 96:2870–2881

    Article  PubMed  CAS  Google Scholar 

  • Koumi S, Wasserstrom JA, Ten Eick RE (1995b) Beta-adrenergic and cholinergic modulation of the inwardly rectifying K+ current in guinea-pig ventricular myocytes. J Physiol 486:647–659

    PubMed  CAS  Google Scholar 

  • Koumi S, Wasserstrom JA, Ten Eick RE (1995c) Beta-adrenergic and cholinergic modulation of inward rectifier K+ channel function and phosphorylation in guinea-pig ventricle. J Physiol 486:661–678

    PubMed  CAS  Google Scholar 

  • Leblais V, Demolombe S, Vallette G, Langin D, Baro I, Escande D, Gauthier C (1999) β3-Adrenoceptor control the cystic fibrosis transmembrane conductance regulator through a cAMP/protein kinase A independent pathway. J Biol Chem 10:6107–6113

    Article  Google Scholar 

  • Liu GX, Derst C, Schlichthorl G, Heinen S, Seebohm G, Bruggemann A, Kummer W, Veh RW, Daut J, Preisig-Muller R (2001) Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J Physiol 532:115–126

    Article  PubMed  CAS  Google Scholar 

  • Lopatin AN, Nichols CG (2001) Inward rectifiers in the heart: an update on IK1. J Mol Cell Cardiol 33:625–638

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Horinouchi T, Tanaka Y, Tsuru H, Koike K (2003) Characterization of beta 3-adrenoceptor-mediated relaxation in rat abdominal aorta smooth muscle. Eur J Pharmacol 482:235–244

    Article  PubMed  CAS  Google Scholar 

  • Miake J, Marban E, Nuss HB (2003) Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest 111:1529–1536

    Article  PubMed  CAS  Google Scholar 

  • Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annu Rev Physiol 59:171–191

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81:1415–1459

    PubMed  CAS  Google Scholar 

  • Park WS, Han J, Kim N, Ko JH, Kim SJ, Earm YE (2005) Activation of inward rectifier K+ channels by hypoxia in rabbit coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 289:H2461–H2467

    Article  PubMed  CAS  Google Scholar 

  • Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519

    Article  PubMed  CAS  Google Scholar 

  • Preisig-Müller R, Schlichthörl G, Goerge T, Heinen S, Bruggemann A, Rajan S, Derst C, Veh RW, Daut J (2002) Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome. Proc Natl Acad Sci USA 99:7774–7779

    Article  PubMed  CAS  Google Scholar 

  • Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, Napolitano C, Anumonwo J, di Barletta MR, Gudapakkam S, Bosi G, Stramba-Badiale M, Jalife J (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in KCNJ2 gene. Circ Res 96:800–807

    Article  PubMed  CAS  Google Scholar 

  • Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    Article  PubMed  CAS  Google Scholar 

  • Schram G, Pourrier M, Wang Z, White M, Nattel S (2003) Barium block of Kir2 and human cardiac inward rectifier currents: evidence for subunit-heteromeric contribution to native currents. Cardiovasc Res 59:328–338

    Article  PubMed  CAS  Google Scholar 

  • Skeberdis VA, Jurevicius J, Fischmeister R (1999) β3-Adrenergic regulation of the L-type calcium current in human atrial myocytes. Biophys J 76:A343–A343

    Google Scholar 

  • Soeder KJ, Snedden SK, Cao W, Della Rocca GJ, Daniel KW, Luttrell LM, Collins S (1999) The β3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J Biol Chem 274:12017–12022

    Article  PubMed  CAS  Google Scholar 

  • Sterin-Borda L, Bernabeo G, Ganzinelli S, Joensen L, Borda E (2006) Role of nitric oxide/cyclic GMP and cyclic AMP in β3 adrenoceptor-chronotropic response. J Mol Cell Cardiol 40:580–588

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki J, Tagaya E, Isono K, Nagai A (1998) Atypical adrenoceptor-mediated relaxation of canine pulmonary artery through a cAMP-dependent pathway. Biochem Biophys Res Commun 248:722–727

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Hammerling BC, Wimmer AB, Wu K, Ficker E, Kuryshev YA, Scherer D, Kiehn J, Katus HA, Schoels W, Karle CA (2004) Direct block of hERG potassium channels by the protein kinase C inhibitor bisindolylmaleimide I (GF109203X). Cardiovasc Res 64:467–476

    Article  PubMed  CAS  Google Scholar 

  • Topert C, Doring F, Wischmeyer E, Karschin C, Brockhaus J, Ballanyi K, Derst C, Karschin A (1998) Kir2.4: a novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J Neurosci 18:4096–4105

    PubMed  CAS  Google Scholar 

  • Trochu JN, Leblais V, Rautureau Y, Beverelli F, Le Marec H, Berdeaux A, Gauthier C (1999) Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br J Pharmacol 128:69–76

    Article  PubMed  CAS  Google Scholar 

  • Witchel HJ, Milnes JT, Mitcheson JS, Hancox JC (2002) Troubleshooting problems with in vitro screening of drugs for QT interval prolongation using HERG K+ channels expressed in mammalian cell lines and Xenopus oocytes. J Pharmacol Toxicol Methods 48:65–80

    Article  PubMed  CAS  Google Scholar 

  • Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL (2000) Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circ Res 87:160–166

    PubMed  CAS  Google Scholar 

  • Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL (2001) The consequences of disrupting cardiac inwardly rectifying K(+) current (I(K1)) as revealed by the targeted deletion of murine Kir2.1 and Kir2.2 genes. J Physiol 533:697–710

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Zhu W, Han Q, Xiao RP (2005) Emerging concepts and therapeutic implications of beta-adrenergic receptor subtype signaling. Pharmacol Ther 108:257–268

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Qu Z, Cui N, Jiang C (1999) Suppression of Kir2.3 activity by protein kinase C phosphorylation of the channel protein at threonine 53. J Biol Chem 274:11643–11646

    Article  PubMed  CAS  Google Scholar 

  • Zitron E, Kiesecker C, Lück S, Kathöfer S, Thomas D, Kreye VA, Kiehn J, Katus HA, Schoels W, Karle CA (2004) Human cardiac inwardly rectifying current IKir2.2 is upregulated by activation of protein kinase A. Cardiovasc Res 63:520–527

    Article  PubMed  CAS  Google Scholar 

  • Zitron E, Scholz EP, Owen RW, Lück S, Kiesecker C, Thomas D, Kathofer S, Niroomand F, Kiehn J, Kreye VA, Katus HA, Schoels W, Karle CA (2005) QTc prolongation by grapefruit juice and its potential pharmacological basis: HERG channel blockade by flavonoids. Circulation 111:835–838

    Article  PubMed  CAS  Google Scholar 

  • Zobel C, Cho HC, Nguyen TT, Pekhletski R, Diaz RJ, Wilson GJ, Backx PH (2003) Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes: evidence for heteromeric coassembly of Kir2.1 and Kir2.2. J Physiol 550:365–372

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of Sonja Lueck and Ramona Bloehs is gratefully acknowledged. Financial support for this study was granted by the following institutions:

1. Deutsche Forschungsgemeinschaft: project Ka 1714/1-2 to C.A.K. and project TH 1120/1-1 to D.T.

2. University of Heidelberg: Young Investigator Award / Postdoc Programme to E.Z., C.K. and E.P.S.

3. Deutsche Stiftung für Herzforschung: project F/10/03 to D.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Zitron.

Additional information

Daniel Scherer and Claudia Kiesecker contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

210_2007_167_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, D., Kiesecker, C., Kulzer, M. et al. Activation of inwardly rectifying Kir2.x potassium channels by β3-adrenoceptors is mediated via different signaling pathways with a predominant role of PKC for Kir2.1 and of PKA for Kir2.2. Naunyn-Schmied Arch Pharmacol 375, 311–322 (2007). https://doi.org/10.1007/s00210-007-0167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0167-5

Keywords

Navigation