Skip to main content

Advertisement

Log in

Effect of endothelin-1 on erythropoietin production in a rat model under normoxia and functional carbon monoxide-induced hypoxia

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

It has been hypothesized that autacoids, such as endothelin-1 (ET), may modulate erythropoietin (Epo) secretion. Therefore, we studied the effect of ET-1 infusion and of a nonselective ETA/B receptor antagonist on Epo secretion under carbon monoxide (CO) exposure. Anesthetized rats were supplied with room temperature air containing increasing concentrations of CO by an aerating cap. A CO–Epo dose–response curve over the range of 0.02–0.14 vol% CO was conducted. Subpressor doses of ET-1 (3 pmol/min/kg BW) and the ETA/B receptor antagonist LU302872 (LU; 30 mg/kg) were applied to anaesthetized rats under normoxia (controls CON, ET, LU) and following hypoxia (CO exposure; H-CON, H-ET, H-LU). Mean arterial blood pressure (MAP), glomerular filtration rate (GFR, inulin clearance), Epo and ET-1 serum concentrations (ELISA) and renal Epo mRNA (Light Cycler) were determined. The EC50 value for CO was 0.1 vol% with a 70-fold increase in Epo serum concentrations. CO exposure increased Epo serum and Epo mRNA concentrations in the expected range in all groups. None of the treatments with ET or LU influenced the effect of hypoxia on Epo serum concentrations and renal Epo mRNA content. Under hypoxia, administration of ET-1 as well as LU prevented the hypoxia-induced decrease in MAP (p<0.05). Under hypoxia, GFR was reduced by 50% except for H-LU with values comparable to normoxia. Taken together, the influence of hypoxia exceeds by far the effect of ET-1 on Epo production, irrespective of the presence or absence of exogenous ET-1. Thus, ET-1 does not appear to be a major modulator of Epo production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amberg W, Hergenröder S, Hillen H, Jansen R, Kettschau G, Kling A, Klinge D, Raschak M, Riechers H, Unger L (1999) Discovery and synthesis of (S)-3-2-(3,4-dimethoxyphenyl)ethoxy-2-(4,6-dimethylpyrimidin-2-yloxy)-3,3-diphenylpropionic acid (LU 302872), a novel orally active mixed ETA/ETB receptor antagonist. J Med Chem 42:3026–3032

    Article  PubMed  CAS  Google Scholar 

  • Barton M, Shaw S, d’Uscio LV, Moreau P, Lüscher TF (1998) Differential modulation of the renal and myocardial endothelin system by angiotensin II in vivo. Effects of chronic selective ETA receptor blockade. J Cardiovasc Pharmacol 31 [Suppl 1]:S265–S268

    Article  PubMed  Google Scholar 

  • Benöhr P, Harsch S, Proksch B, Gleiter CH (2004) Does angiotensin II modulate erythropoietin production in HepG2 cells? Nephron Exp Nephrol 98:e124–e131

    Article  PubMed  Google Scholar 

  • Brochu E, Lacasse S, Larivière R, Kingma I, Grose JH, Lebel M (1999) Differential effects of endothelin-1 antagonists on erythropoietin-induced hypertension in renal failure. J Am Soc Nephrol 10:1440–1446

    PubMed  CAS  Google Scholar 

  • Eckardt KU, Kurtz A, Bauer C (1989) Regulation of erythropoietin production is related to proximal tubular function. Am J Physiol 256:F942–F947

    PubMed  CAS  Google Scholar 

  • Elton TS, Oparil S, Taylor GR, Hicks PH, Yang RH, Jin H, Chen HF (1992) Normobaric hypoxia stimulates endothelin-1 gene expression in the rat. Am J Physiol 263:R1260–R1264

    PubMed  CAS  Google Scholar 

  • Freudenthaler S, Schreeb KH, Lucht I, Schenck T, Gleiter CH (2000) Dose-dependent effect of angiotensin II on human erythropoietin production. Pflugers Arch Eur J Physiol 439:838–844

    Article  CAS  Google Scholar 

  • Galat JA, Robinson AV, Rhodes RS (1988) The contribution of hypoxia to postischemic renal dysfunction. Surgery 104:257–265

    PubMed  CAS  Google Scholar 

  • Gleiter CH, Brause M, Delabar U, Zebski H, Eckardt KU (1997) Evidence against a major role of adenosine in oxygen-dependent regulation of erythropoietin in rats. Kidney Int 52:338–344

    Article  PubMed  CAS  Google Scholar 

  • Goddard J, Johnston NR, Hand MF, Cumming AD, Rabelink TJ, Rankin AJ, Webb DJ (2004) Endothelin-A receptor antagonism reduces blood pressure and increases renal blood flow in hypertensive patients with chronic renal failure. Circulation 109:1186–1193

    Article  PubMed  CAS  Google Scholar 

  • Goerre S, Wenk M, Bärtsch P, Lüscher TF, Nirooman F, Hohenhaus E, Oelz O, Reinhart W (1995) Endothelin-1 in pulmonary hypertension associated with high-altitude exposure. Circulation 90:359–364

    Google Scholar 

  • Henry DH, Bowers P, Romano MT, Provenzano R (2004) Epoetin alfa. Clinical evolution of a pleiotropic cytokine. Arch Intern Med 164:262–276

    Article  PubMed  CAS  Google Scholar 

  • Jilma B, Krejcy K, Dirnberger E, Eichler HG, Kapiotis S, Dorner GT, Wagner OF (1997) Effects of angiotensin II infusion at pressor and subpressor doses on endothelin-1 plasma levels in healthy men. Life Sci 60:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Just A, Olson AJ, Arendshorst WJ (2004) Dual constrictor and dilator actions of ET B receptors in the rat renal microcirculation: interactions with ET A receptors. Am J Physiol Renal Physiol 286:F660–F668

    Article  PubMed  CAS  Google Scholar 

  • Luippold G, Beilharz M, Muhlbauer B (2001) Reduction of glomerular hyperfiltration by dopamine D(2)-like receptor blockade in experimental diabetes mellitus. Nephrol Dial Transplant 16:1350–1356

    Article  PubMed  CAS  Google Scholar 

  • Luippold G, Pech B, Schneider S, Osswald H, Mühlbauer B (2002) Age dependency of renal function in CD-1 mice. Am J Physiol Renal Physiol 282:F886–F890

    PubMed  CAS  Google Scholar 

  • Morganti A, Guissani M, Sala C, Gazzano G, Marana I, Pierini A, Savoia MT, Ghio F, Cogo A, Zanchetti A (1995) Effects of exposure to high altitude on plasma endothelin-1 levels in normal subjects. J Hypertens 13:859–865

    Article  PubMed  CAS  Google Scholar 

  • Nir A, Clavell AL, Heublein D, Aarhus LL, Burnett JC Jr (1994) Acute hypoxia and endogenous renal endothelin. J Am Soc Nephrol 4:1920–1924

    PubMed  CAS  Google Scholar 

  • Östlund E, Lindholm H, Hemsen A, Fried G (2000) Fetal erythropoietin and endothelin-1: relation to hypoxia and intrauterine growth retardation. Acta Obstet Gynecol Scand 79:276–282

    Article  PubMed  Google Scholar 

  • Perrella AM, Edell SE, Krowka, JM, Cortese AD, Burnett JC Jr (1992) Endothelium-derived factor in pulmonary and renal circulation during hypoxia. Am J Physiol 263:R45–R50

    PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Ritthaler T, Göpfert T, Firth J, Ratcliffe PJ, Krämer BK, Kurtz A (1996) Influence of hypoxia on hepatic and renal endothelin gene expression. Pflugers Arch Eur J Physiol 431:587–593

    Article  CAS  Google Scholar 

  • Sigiura M, Inagami T, Kon V (1989) Endotoxin stimulates endothelin release in vivo and in vitro as determined by radioimmunoassay. Biochem Biophys Res Commun 161:1220

    Article  Google Scholar 

  • Sung CP, Arleth AJ, Storer BL, Ohlstein EH (1994) Angiotensin type I receptors mediate smooth muscle proliferation and endothelin biosynthesis in rat vascular smooth muscle. J Pharmacol Exp Ther 271:429–437

    PubMed  CAS  Google Scholar 

  • Syed N, Gulmi FA, Chou SY, Mooppan UM, Kim H (1998) Renal actions of endothelin-1 under endothelin receptor blockade by BE-18257B. J Urol 159:563–566

    Article  PubMed  CAS  Google Scholar 

  • Takabatake T, Ise T, Ohta K, Kobayashi K (1992) Effects of endothelin on renal hemodynamics and tubuloglomerular feedback. Am J Physiol 263:F103–F108

    PubMed  CAS  Google Scholar 

  • Vemulapalli S, Chiu PJS, Griscti K, Brown A, Kurowski S, Sybertz EJ (1994) Phosphoramidon does not inhibit endogenous endothelin-1 release stimulated by hemorrhage, cytokines and hypoxia in rats. Eur J Pharmacol 257:95–102

    Article  PubMed  CAS  Google Scholar 

  • Walker BR (1982) Diuretic response to acute hypoxia in the conscious dog. Am J Physiol 243:F440–F446

    PubMed  CAS  Google Scholar 

  • Wolf SC, Gaschler F, Brehm S, Klaussner M, Amann K, Risler T, Brehm BR (2000) Endothelin-receptor antagonists in uremic cardiomyopathy. J Cardiovasc Pharmacol 36 [Suppl 1]:S348–S350

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Federal Ministry of Education, Science, Research and Technology (BMBF, grant 01EC0001) and by funding of the Medical Faculty, University of Tübingen (fortüne, grant 952-0-0).The authors gratefully acknowledge the expert assistance of Mr. W. Beer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Gleiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grenz, A., Klein, J., Köhle, C. et al. Effect of endothelin-1 on erythropoietin production in a rat model under normoxia and functional carbon monoxide-induced hypoxia. Naunyn-Schmied Arch Pharmacol 373, 342–348 (2006). https://doi.org/10.1007/s00210-006-0085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0085-y

Keywords

Navigation