Skip to main content
Log in

Agonist effects of zinterol at the mouse and human β3-adrenoceptor

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The present study investigates the action of zinterol at β3-adrenoceptors. We used mouse primary brown adipocytes and Chinese hamster ovary (CHO-K1) cells expressing the mouse or human β3-adrenoceptor. Zinterol was a full agonist at increasing cyclic AMP levels in primary brown adipocytes (which express β1- and β3-adrenoceptors but not β2-adrenoceptors), and this effect was almost totally abolished in adipocytes derived from β3-adrenoceptor knock-out (KO) mice. Zinterol was also a full agonist at increasing another biological end-point, glucose uptake in brown adipocytes. This effect was reduced in adipocytes derived from β3-adrenoceptor KO mice, with the remaining response sensitive to β1-adrenoceptor antagonism. To determine whether the effect of zinterol on β3-adrenoceptors in primary brown adipocytes can be replicated in a recombinant system, we used CHO-K1 cells expressing the mouse or human β3-adrenoceptor. Zinterol was a full agonist at mouse and human receptors with respect to increasing cyclic AMP levels, with pEC50 values similar to that of the selective β3-adrenoceptor agonist (R, R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]-propyl]1,3-benzodioxole-2,2-dicarboxylate (CL316243) at the mouse receptor. At the human receptor, zinterol was more potent at increasing cyclic AMP levels than CL316243. In cytosensor microphysiometer studies, zinterol was a full agonist for increases in extracellular acidification rates at the mouse and human β3-adrenoceptor. Therefore, we have shown that zinterol is a potent, high-efficacy β3-adrenoceptor agonist at the endogenous mouse β3-adrenoceptor in primary brown adipocytes and at the cloned mouse and human β3-adrenoceptor expressed in CHO-K1 cells. Zinterol is therefore one of few β-adrenoceptor agonists with high potency and efficacy at the human β3-adrenoceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CHO-K1:

Chinese hamster ovary

CGP12177A:

(+)-4-(3-t-butylamino-2-hydroxy-propoxy)benzimidazol-2-one

CL316243:

(R, R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]-propyl]1,3-benzodioxole-2,2-dicarboxylate

ECAR:

extracellular acidification rate

ICI89406:

N-[2-[3-(2-Cyanophenoxy)-2-hydroxypropylamino]ethyl-N´-phenylurea

KO:

knock-out

References

  • Altschuld RA, Starling RC, Hamlin RL, Billman GE, Hensley J, Castillo L, Fertel RH, Hohl CM, Robitaille PM, Jones LR, Xiao R-P, Lakatta EG (1995) Response of failing canine and human heart cells to β2-adrenergic stimulation. Circulation 92:1612–1618

    PubMed  CAS  Google Scholar 

  • Arch JR (2002) β3-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 440:99–107

    Article  PubMed  CAS  Google Scholar 

  • Arch JR, Wilson S (1996) Prospects for β3-adrenoceptor agonists in the treatment of obesity and diabetes. Int J Obes Relat Metab Disord 20:191–199

    PubMed  CAS  Google Scholar 

  • Arch JR, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, Thody VE, Wilson C, Wilson S (1984) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–165

    Article  PubMed  CAS  Google Scholar 

  • Baker JG (2005a) The selectivity of β-adrenoceptor antagonists at the human β1-, β2- and β3-adrenoceptors. Br J Pharmacol 144:317–322

    Article  PubMed  CAS  Google Scholar 

  • Baker JG (2005b) Evidence for a secondary state of the human β3-adrenoceptor. Mol Pharmacol 146:2271–2284

    Google Scholar 

  • Blin N, Camoin L, Maigret B, Strosberg AD (1993) Structural and conformational features determining selective signal transduction in the β3-adrenergic receptor. Mol Pharmacol 44:1094–1104

    PubMed  CAS  Google Scholar 

  • Bronnikov G, Bengtsson T, Kramarova L, Golozoubova V, Cannon B, Nedergaard J (1999) β1- to β3- switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct β-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology 140:4185–4197

    Article  PubMed  CAS  Google Scholar 

  • Candelore MR, Deng L, Tota L, Guan XM, Amend A, Liu Y, Newbold R, Cascieri MA, Weber AE (1999) Potent and selective human β3-adrenergic receptor antagonists. J Pharmacol Exp Ther 290:649–655

    PubMed  CAS  Google Scholar 

  • Carpene C, Galitzky J, Fontana E, Atgie C, Lafontan M, Berlan M (1999) Selective activation of β3-adrenoceptors by octopamine: comparative studies in mammalian fat cells. Naunyn-Schmiedebergs Arch Pharmacol 359:310–321

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Chernogubova E, Cannon B, Bengtsson T (2004) Norepinephrine increases glucose transport in brown adipocytes via β3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145:269–280

    Article  PubMed  CAS  Google Scholar 

  • Chernogubova E, Hutchinson DS, Nedergaard J, Bengtsson T (2005) α1- and β1-Adrenoceptor signaling fully compensate for β3-adrenoceptor deficiency in brown adipocyte norepinephrine-stimulated glucose uptake. Endocrinology 146:2271–2284

    Article  PubMed  CAS  Google Scholar 

  • de Ponti F, Modini C, Gibelli G, Crema F, Frigo G (1999) Atypical β-adrenoceptors mediating relaxation in the human colon: functional evidence for β3- rather than β4-adrenoceptors. Pharmacol Res 39:345–348

    Article  PubMed  Google Scholar 

  • Deng C, Paoloni-Giacobino A, Kuehne F, Boss O, Revelli JP, Moinat M, Cawthorne MA, Muzzin P, Giacobino JP (1996) Respective degree of expression of β1-, β2- and β3-adrenoceptors in human brown and white adipose tissues. Br J Pharmacol 118:929–934

    PubMed  CAS  Google Scholar 

  • Evans BA, Papaioannou M, Hamilton S, Summers RJ (1999) Alternative splicing generates two isoforms of the β3-adrenoceptor which are differentially expressed in mouse tissues. Br J Pharmacol 127:1525–1531

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF (1972) The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. In: Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York pp 283–335

  • Gauthier C, Langin D, Balligand JL (2000) β3-Adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431

    Article  PubMed  CAS  Google Scholar 

  • Germack R, Adli H, Vassy R, Perret GY (1996) Triiodothyronine and amiodarone effects on β3-adrenoceptor density and lipolytic response to the β3-adrenergic agonist BRL 37344 in rat white adipocytes. Fundam Clin Pharmacol 10:289–297

    Article  PubMed  CAS  Google Scholar 

  • Heubach JF, Graf EM, Molenaar P, Jager A, Schroder F, Herzig S, Harding SE, Ravens U (2001) Murine ventricular L-type Ca2+ current is enhanced by zinterol via β1-adrenoceptors, and is reduced in TG4 mice overexpressing the human β2-adrenoceptor. Br J Pharmacol 133:73–82

    Article  PubMed  CAS  Google Scholar 

  • Hirst MA, Pitchford S (1993) Use of a single assay system to assess functional coupling of a variety of receptors. J NIH Res 5:69–73

    Google Scholar 

  • Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human β-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 369:151–159

    Article  PubMed  CAS  Google Scholar 

  • Hoffstedt J, Lonnqvist F, Shimizu M, Blaak E, Arner P (1996) Effects of several putative β3-adrenoceptor agonists on lipolysis in human omental adipocytes. Int J Obes Relat Metab Disord 20:428–434

    PubMed  CAS  Google Scholar 

  • Holloway BR, Howe R, Rao BS, Stribling D, Mayers RM, Briscoe MG, Jackson JM (1991) ICI D7114 a novel selective β-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption. Br J Pharmacol 104:97–104

    PubMed  CAS  Google Scholar 

  • Hool LC, Harvey RD (1997) Role of β1- and β2-adrenergic receptors in regulation of Cl- and Ca2+ channels in guinea pig ventricular myocytes. Am J Physiol 273:H1669–H1676

    PubMed  CAS  Google Scholar 

  • Hutchinson DS, Bengtsson T, Evans BA, Summers RJ (2002) Mouse β3a- and β3b-adrenoceptors expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct signalling pathways. Br J Pharmacol 135:1903–1914

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Sato M, Evans BA, Christopoulos A, Summers RJ (2005a) Evidence for pleiotropic signaling at the mouse β3-adrenoceptor revealed by SR59230A [3-(2-ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate]. J Pharmacol Exp Ther 312:1064–1074

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Chernogubova E, Dallner OS, Cannon B, Bengtsson T (2005b) β-Adrenoceptors, but not α-adrenoceptors, stimulate AMP-activated protein kinase in brown adipocytes independently of uncoupling protein-1. Diabetologia 48:2386–2395

    Article  PubMed  CAS  Google Scholar 

  • Joseph SS, Lynham JA, Colledge WH, Kaumann AJ (2004a) Binding of (–)-[3H]-CGP12177 at two sites in recombinant human β1-adrenoceptors and interaction with β-blockers. Naunyn Schmiedebergs Arch Pharmacol 369:525–532

    Article  PubMed  CAS  Google Scholar 

  • Joseph SS, Lynham JA, Grace AA, Colledge WH, Kaumann AJ (2004b) Markedly reduced effects of (–)-isoprenaline but not of (–)-CGP12177 and unchanged affinity of β-blockers at Gly389-β1-adrenoceptors compared to Arg389-β1-adrenoceptors. Br J Pharmacol 142:51–56

    Article  PubMed  CAS  Google Scholar 

  • Juberg EN, Minneman KP, Abel PW (1985) β1- and β2-adrenoceptor binding and functional response in right and left atria of rat heart. Naunyn Schmiedebergs Arch Pharmacol 330:193–202

    Article  PubMed  CAS  Google Scholar 

  • Kaumann AJ, Sanders L, Lynham JA, Bartel S, Kuschel M, Karczewski P, Krause EG (1996) β2-Adrenoceptor activation by zinterol causes protein phosphorylation, contractile effects and relaxant effects through a cAMP pathway in human atrium. Mol Cell Biochem 163–164:113–123

    Article  PubMed  Google Scholar 

  • Konkar AA, Zhu ZX, Granneman JG (2000) Aryloxypropanolamine and catecholamine ligand interactions with the β1-adrenergic receptor: evidence for interaction with distinct conformations of β1-adrenergic receptors. J Pharmacol Exp Ther 294:923–932

    PubMed  CAS  Google Scholar 

  • Kubota Y, Nakahara T, Yunoki M, Mitani A, Maruko T, Sakamoto K, Ishii K (2002) Inhibitory mechanism of BRL37344 on muscarinic receptor-mediated contractions of the rat urinary bladder smooth muscle. Naunyn Schmiedebergs Arch Pharmacol 366:198–203

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov V, Pak E, Robinson RB, Steinberg SF (1995) β2-Adrenergic receptor actions in neonatal and adult rat ventricular myocytes. Circ Res 76:40–52

    PubMed  CAS  Google Scholar 

  • Laflamme MA, Becker PL (1998) Do β2-adrenergic receptors modulate Ca2+ in adult rat ventricular myocytes? Am J Physiol 274:H1308–H1314

    PubMed  CAS  Google Scholar 

  • Leblais V, Pourageaud F, Ivorra MD, Marthan R, Muller B (2005) Comparison of the α-adrenoceptor-mediated effects of β3-adrenoceptor ligands in rat pulmonary artery. Naunyn Schmiedebergs Arch Pharmacol 371:535–539

    Article  PubMed  CAS  Google Scholar 

  • Levin BE, Sullivan AC (1986) β1-Receptor is the predominant β-adrenoreceptor on rat brown adipose tissue. J Pharmacol Exp Ther 236:681–688

    PubMed  CAS  Google Scholar 

  • MacLennan SJ, Reynen PH, Martin RS, Eglen RM, Martin GR (2000) Characterization of human recombinant α2A-adrenoceptors expressed in Chinese hamster lung cells using extracellular acidification rate changes. Br J Pharmacol 129:1333–1338

    Article  PubMed  CAS  Google Scholar 

  • Manara L, Badone D, Baroni M, Boccardi G, Cecchi R, Croci T, Giudice A, Guzzi U, Landi M, Le Fur G (1996) Functional identification of rat atypical β-adrenoceptors by the first β3-selective antagonists, aryloxypropanolaminotetralins. Br J Pharmacol 117:435–442

    PubMed  CAS  Google Scholar 

  • Mauriege P, De Pergola G, Berlan M, Lafontan M (1988) Human fat cell β-adrenergic receptors: β-agonist-dependent lipolytic responses and characterization of β-adrenergic binding sites on human fat cell membranes with highly selective β1-antagonists. J Lipid Res 29:587–601

    PubMed  CAS  Google Scholar 

  • Minneman KP, Hedberg A, Molinoff PB (1979) Comparison of β-adrenergic receptor subtypes in mammalian tissues. J Pharmacol Exp Ther 211:502–508

    PubMed  CAS  Google Scholar 

  • Mohamed-Ali V, Flower L, Sethi J, Hotamisligil G, Gray R, Humphries SE, York DA, Pinkney J (2001) β-Adrenergic regulation of IL-6 release from adipose tissue: in vivo and in vitro studies. J Clin Endocrinol Metab 86:5864–5869

    Article  PubMed  CAS  Google Scholar 

  • Muzzin P, Revelli JP, Kuhne F, Gocayne JD, McCombie WR, Venter JC, Giacobino JP, Fraser CM (1991) An adipose tissue-specific β-adrenergic receptor. Molecular cloning and down-regulation in obesity. J Biol Chem 266:24053–24058

    PubMed  CAS  Google Scholar 

  • Nagykaldi Z, Kem D, Lazzara R, Szabo B (1999) Canine ventricular myocyte β2-adrenoceptors are not functionally coupled to L-type calcium current. J Cardiovasc Electrophysiol 10:1240–1251

    Article  PubMed  CAS  Google Scholar 

  • Nevzorova J, Bengtsson T, Evans BA, Summers RJ (2002) Characterization of the β-adrenoceptor subtype involved in mediation of glucose transport in L6 cells. Br J Pharmacol 137:9–18

    Article  PubMed  CAS  Google Scholar 

  • Nevzorova J, Evans BA, Bengtsson T, Summers RJ (2006) Multiple signalling pathways involved in β2-adrenoceptor-mediated glucose uptake in rat skeletal muscle cells. Br J Pharmacol 147:446–454

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Tonello C, Carruba MO (1995) Differential relevance of β-adrenoceptor subtypes in modulating the rat brown adipocytes function. Arch Int Pharmacodyn Ther 329:436–453

    PubMed  CAS  Google Scholar 

  • Nisoli E, Tonello C, Landi M, Carruba MO (1996) Functional studies of the first selective β3-adrenergic receptor antagonist SR 59230A in rat brown adipocytes. Mol Pharmacol 49:7–14

    PubMed  CAS  Google Scholar 

  • Orcutt AL, Cline TR, Mills SE (1989) Influence of the β2-adrenergic agonist clenbuterol on insulin-stimulated lipogenesis in mouse adipocytes. Domest Anim Endocrinol 6:59–69

    Article  PubMed  CAS  Google Scholar 

  • Pan SJ, Hancock J, Ding Z, Fogt D, Lee M, Ivy JL (2001) Effects of clenbuterol on insulin resistance in conscious obese Zucker rats. Am J Physiol 280:E554–E561

    CAS  Google Scholar 

  • Pihlavisto M, Scheinin M (1999) Functional assessment of recombinant human α2-adrenoceptor subtypes with cytosensor microphysiometry. Eur J Pharmacol 385:247–253

    Article  PubMed  CAS  Google Scholar 

  • Popp BD, Hutchinson DS, Evans BA, Summers RJ (2004) Stereoselectivity for interactions of agonists and antagonists at mouse, rat and human β3-adrenoceptors. Eur J Pharmacol 484:323–331

    Article  PubMed  CAS  Google Scholar 

  • Rehnmark S, Nechad M, Herron D, Cannon B, Nedergaard J (1990) α- and β-adrenergic induction of the expression of the uncoupling protein thermogenin in brown adipocytes differentiated in culture. J Biol Chem 265:16464–16471

    PubMed  CAS  Google Scholar 

  • Roberts SJ, Papaioannou M, Evans BA, Summers RJ (1999) Characterization of β-adrenoceptor mediated smooth muscle relaxation and the detection of mRNA for β1-, β2- and β3-adrenoceptors in rat ileum. Br J Pharmacol 127:949–961

    Article  PubMed  CAS  Google Scholar 

  • Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK (1999) Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J Biol Chem 274:16701–16708

    Article  PubMed  CAS  Google Scholar 

  • Sillence MN, Moore NG, Pegg GG, Lindsay DB (1993) Ligand binding properties of putative β3-adrenoceptors compared in brown adipose tissue and in skeletal muscle membranes. Br J Pharmacol 109:1157–1163

    PubMed  CAS  Google Scholar 

  • Skeberdis VA, Jurevicius J, Fischmeister R (1997) β2-Adrenergic activation of L-type Ca2+ current in cardiac myocytes. J Pharmacol Exp Ther 283:452–461

    PubMed  CAS  Google Scholar 

  • Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, Himms-Hagen J, Flier JS, Lowell BB (1995) Targeted disruption of the β3-adrenergic receptor gene. J Biol Chem 270:29483–29492

    Article  PubMed  CAS  Google Scholar 

  • Weyer C, Gautier JF, Danforth E Jr (1999) Development of β3-adrenoceptor agonists for the treatment of obesity and diabetes-an update. Diabetes Metab 25:11–21

    PubMed  CAS  Google Scholar 

  • Weyer C, Tataranni PA, Snitker S, Danforth E, Jr., Ravussin E (1998) Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective β3-adrenoceptor agonist in humans. Diabetes 47:1555–1561

    Article  PubMed  CAS  Google Scholar 

  • Xiao RP, Lakatta EG (1993) β1-Adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 73:286–300

    PubMed  CAS  Google Scholar 

  • Yanagisawa T, Sato T, Yamada H, Sukegawa J, Nunoki K (2000) Selectivity and potency of agonists for the three subtypes of cloned human β-adrenoceptors expressed in Chinese hamster ovary cells. Tohoku J Exp Med 192:181–193

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZS, Cheng HJ, Ukai T, Tachibana H, Cheng CP (2001) Enhanced cardiac L-type calcium current response to β2-adrenergic stimulation in heart failure. J Pharmacol Exp Ther 298:188–196

    PubMed  CAS  Google Scholar 

  • Zhao J, Cannon B, Nedergaard J (1998) Thermogenesis is β3- but not β1-adrenergically mediated in rat brown fat cells, even after cold acclimation. Am J Physiol 275:R2002–R2011

    PubMed  CAS  Google Scholar 

  • Zhao J, Unelius L, Bengtsson T, Cannon B, Nedergaard J (1994) Coexisting β-adrenoceptor subtypes: significance for thermogenic process in brown fat cells. Am J Physiol 267:C969–C979

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Martina Helin, Tina Wallin and Maria Uustalu for technical assistance. This study was supported by the Swedish Natural Science Research Council, the Tore Nilsons Stiftelse for Medicinsk Forskening, the Jeanssonska funds and National Health and Medical Research Council of Australia Project Grant 236884. Prof Roger Summers was the 2003 Tage Erlander Gästprofessor of the Swedish Natural Science Research Council and Dr Dana S Hutchinson is a CJ Martin Fellow of the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tore Bengtsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchinson, D.S., Chernogubova, E., Sato, M. et al. Agonist effects of zinterol at the mouse and human β3-adrenoceptor. Naunyn Schmied Arch Pharmacol 373, 158–168 (2006). https://doi.org/10.1007/s00210-006-0056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0056-3

Keywords

Navigation