Skip to main content
Log in

Topiramate augments the antipsychotic-like effect and cortical dopamine output of raclopride

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Recent clinical studies have shown that the anticonvulsant drug topiramate may improve negative symptoms in schizophrenia when added to a stable regimen of neuroleptic medication. It has also been shown that addition of topiramate to neuroleptics might be beneficial in treatment-resistant schizophrenia. Clinically effective doses of antipsychotic drugs (APDs) have been found to suppress conditioned avoidance response behavior (CAR), a preclinical test of antipsychotic activity with high predictive validity, in rats. Therefore, we investigated the putative antipsychotic-like activity of topiramate when added to the selective dopamine (DA) D2 receptor antagonist raclopride, using the CAR model in the rat. Extrapyramidal side effect liability of the drug combination was evaluated in parallel by means of the catalepsy test. We also examined the effect of this drug treatment on DA release in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAC), using in vivo microdialysis in freely moving animals. Topiramate (40 mg/kg), while ineffective when given alone, significantly augmented the antipsychotic-like effect of raclopride (0.075 mg/kg) on CAR without any concomitant catalepsy. Addition of topiramate to rats treated with raclopride generated a large increase in DA output in the mPFC, whereas no additional effect on the raclopride-induced DA release in the NAC was obtained. These data support the adjunctive use of topiramate in schizophrenia to ameliorate negative symptoms and suggest that this treatment may increase the efficacy, but not the extrapyramidal side effect liability, of the APDs used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahlenius S, Hillegaart V (1986) Involvement of extrapyramidal motor mechanisms in the suppression of locomotor activity by antipsychotic drugs: a comparison between the effects produced by pre-and post-synaptic inhibition of dopaminergic neurotransmission. Pharmacol Biochem Behav 24:1409–1415

    Article  PubMed  CAS  Google Scholar 

  • Arnt J (1982) Pharmacological specificity of conditioned avoidance response inhibition in rats: inhibition by neuroleptics and correlation to dopamine receptor blockade. Acta Pharmacol Toxicol 51:321–329

    Article  CAS  Google Scholar 

  • Besag FM (2004) Behavioural effects of the newer antiepileptic drugs: an update. Expert Opin Drug Saf 3:1–8

    Article  PubMed  CAS  Google Scholar 

  • Biton V, Edwards KR, Montouris GD, Sackellares JC, Harden CL, Kamin M, Topiramate TPS-TR Study Group (2001) Topiramate titration and tolerability. Ann Pharmacother 35:173–179

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186

    Article  PubMed  CAS  Google Scholar 

  • Carpenter WT Jr (1996) The treatment of negative symptoms: pharmacological and methodological issues. Br J Psychiatry Suppl, 29:17–22

    PubMed  Google Scholar 

  • Davis JM, Chen N, Glick ID (2003) A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 60:553–564

    Article  PubMed  CAS  Google Scholar 

  • Deutsch SI, Rosse RB, Billingslea EN, Bellack AS, Mastropaolo J (2002) Topiramate antagonizes MK-801 in an animal model of schizophrenia. Eur J Pharmacol 449:121–125

    Article  PubMed  CAS  Google Scholar 

  • Deutsch SI, Schwartz BL, Rosse RB, Mastropaolo J, Marvel CL, Drapalski AL (2003) Adjuvant topiramate administration: a pharmacologic strategy for addressing NMDA receptor hypofunction in schizophrenia. Clin Neuropharmacol 26:199–206

    Article  PubMed  CAS  Google Scholar 

  • Drapalski AL, Rosse RB, Peebles RR, Schwartz BL, Marvel CL, Deutsch SI (2001) Topiramate improves deficit symptoms in a patient with schizophrenia when added to a stable regimen of antipsychotic medication. Clin Neuropharmacol 24:290–294

    Article  PubMed  CAS  Google Scholar 

  • Dursun SM, Deakin JF (2001) Augmenting antipsychotic treatment with lamotrigine or topiramate in patients with treatment-resistant schizophrenia: a naturalistic case-series outcome study. J Psychopharmacol 15:297–301

    Article  PubMed  CAS  Google Scholar 

  • Eltayb A, Wadenberg M-L, Svensson TH (2005) Enhanced cortical dopamine output and antipsychotic-like effect of raclopride by adjunctive low dose L-dopa. Biol Psychiatry 58:337–343

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    PubMed  CAS  Google Scholar 

  • Hertel P, Fagerquist MV, Svensson TH (1999) Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by α2 adrenoceptor blockade. Science 286:105–107

    Article  PubMed  CAS  Google Scholar 

  • Hosak L, Libiger J (2002) Antiepileptic drugs in schizophrenia: a review. Eur Psychiatry 17:371–378

    Article  PubMed  CAS  Google Scholar 

  • Husum H, Van Kammen D, Termeer E, Bolwig G, Mathe A (2003) Topiramate normalizes hippocampal NPY-LI in flinders sensitive line 'depressed' rats and upregulates NPY, galanin, and CRH-LI in the hypothalamus: implications for mood-stabilizing and weight loss-inducing effects. Neuropsychopharmacology 28:1292–1299

    Article  PubMed  CAS  Google Scholar 

  • Johnson BA (2004) Topiramate-induced neuromodulation of cortico-mesolimbic dopamine function: a new vista for the treatment of comorbid alcohol and nicotine dependence? Addict Behav 29:1465–1479

    Article  PubMed  Google Scholar 

  • Johnson BA, Ait-Daoud N, Bowden CL, DiClemente CC, Roache JD, Lawson K (2003) Oral topiramate for treatment of alcohol dependence: A randomized controlled trial. Lancet 361:1677–1685

    Article  PubMed  CAS  Google Scholar 

  • Kanner AM, Wuu J, Faught E, Tatum WO, Fix A, French JA (2003) A past psychiatric history may be a risk factor for topiramate-related psychiatric and cognitive adverse events. Epilepsy Behav 4:548–552

    Article  PubMed  Google Scholar 

  • Khan A, Faught E, Gilliam F, Kuzniecky R (1999) Acute psychotic symptoms induced by topiramate. Seizure 8:235–237

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Hall H, Ögren S-O, Gawell L (1985) Specific in vitro and in vivo binding of [3H]-raclopride. A potent substituted benzamide drug with a high affinity for dopamine D2 receptors in the rat brain. Biochem Pharmacol 34:2251–2259

    Article  PubMed  Google Scholar 

  • Kuroki T, Meltzer HY, Ichikawa J (1999) Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 288:774–781

    PubMed  CAS  Google Scholar 

  • Lessig MC, Shapira NA, Murphy TK (2001) Topiramate for reversing atypical antipsychotic weight gain. J Am Acad Child Adolesc Psychiatry 40:1364

    Article  PubMed  CAS  Google Scholar 

  • Leucht S, Pitschel-Walz G, Abraham D, Kissling W (1999) Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo. A meta-analysis of randomized controlled trials. Schizophr Res 35:51–68

    Article  PubMed  CAS  Google Scholar 

  • Li CC (1964) Introduction to experimental statistics. McGraw-Hill, New York, pp 207–226

    Google Scholar 

  • Linnér L, Wiker C, Wadenberg ML, Schalling M, Svensson TH (2002) Noradrenaline reuptake inhibition enhances the antipsychotic-like effect of raclopride and potentiates D2-blockage-induced dopamine release in the medial prefrontal cortex of the rat. Neuropsychopharmacology 27:691–698

    Article  PubMed  Google Scholar 

  • Mathé JM, Nomikos GG, Schilström B, Svensson TH (1998) Non-NMDA excitatory amino acid receptors in the ventral tegmental area mediate systemic dizocilpine (MK-801) induced hyperlocomotion and dopamine release in the nucleus accumbens. J Neurosci Res 51:583–592

    Article  PubMed  CAS  Google Scholar 

  • Mathé JM, Fagerquist MV, Svensson TH (1999) Antipsychotic-like effect of the AMPA receptor antagonist LY326325 as indicated by suppression of conditioned avoidance response in the rat. J Neural Transm 106:1003–1009

    Article  PubMed  Google Scholar 

  • Meltzer HY (1995) Role of serotonin in the action of atypical antipsychotic drugs. Clin Neurosci 3:64–75

    PubMed  CAS  Google Scholar 

  • Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Bunney BS (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 54:1755–1760

    Article  PubMed  CAS  Google Scholar 

  • Mula M, Trimble MR, Lhatoo SD, Sander JW (2003) Topiramate and psychiatric adverse events in patients with epilepsy. Epilepsia 44:659–663

    Article  PubMed  Google Scholar 

  • Nomikos GG, Iurlo M, Andersson JL, Kimura K, Svensson TH (1994) Systemic administration of amperozide, a new atypical antipsychotic drug, preferentially increases dopamine release in the rat medial prefrontal cortex. Psychopharmacology 115: 147–156

    Article  PubMed  CAS  Google Scholar 

  • Noordsy DL, Green AI (2003) Pharmacotherapy for schizophrenia and co-occurring substance use disorders. Curr Psychiatry Rep 5:340–346

    Article  PubMed  Google Scholar 

  • Nordström AL (1995) D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152:1444–1449

    PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Reissmuller E, Ebert U, Loscher W (2000) Anticonvulsant efficacy of topiramate in phenytoin-resistant kindled rats. Epilepsia 41:372–379

    Article  PubMed  CAS  Google Scholar 

  • Richard D, Picard F, Lemieux C, Lalonde J, Samson P, Deshaies Y (2002) The effects of topiramate and sex hormones on energy balance of male and female rats. Int J Obes 26:344–353

    Article  CAS  Google Scholar 

  • Safferman A, Lieberman JA, Kane JM, Szymanski S, Kinon B (1991) Update on the clinical efficacy and side effects of clozapine. Schizophr Bull 17:247–261

    PubMed  CAS  Google Scholar 

  • Salmi P, Samuelsson J, Ahlenius S (1994) A new computer-assisted two-way avoidance conditioning equipment for rats: behavioral and pharmacological validation. J Pharmacol Toxicol Methods 32:155–159

    Article  PubMed  CAS  Google Scholar 

  • Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102:748–759

    Article  PubMed  CAS  Google Scholar 

  • Schilström B, Nomikos GG, Nisell M, Hertel P, Svensson TH (1998) N-methyl-D-aspartate receptor antagonism in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. Neuroscience 82:781–789

    Article  PubMed  Google Scholar 

  • Shaldubina A, Einat H, Szechtman H, Shimon H, Belmaker RH (2002) Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. J Neural Transm 109:433–440

    Article  PubMed  CAS  Google Scholar 

  • Shank RP, Gardocki JF, Vaught JL, Davis CB, Schupsky JJ, Raffa RB (1994) Topiramate: preclinical evaluation of structurally novel anticonvulsant. Epilepsia 35:450–460

    Article  PubMed  CAS  Google Scholar 

  • Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE (2000) An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action. Epilepsia 41:S3–S9

    Article  PubMed  CAS  Google Scholar 

  • Siegel S, Castellan NJ Jr (1988): Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York

    Google Scholar 

  • Svensson TH, Mathé JM (2000) Atypical antipsychotic-like effect of AMPA receptor antagonists in the rat. Aminosan 19:221–226

    CAS  Google Scholar 

  • Svensson TH, Mathe JM, Andersson JL, Nomikos GG, Hildebrand BE, Marcus M (1995) Mode of action of atypical neuroleptics in relation to the phencyclidine model of schizophrenia: role of 5-HT2 receptor and α1-adrenoceptor antagonism. J Clin Psychopharmacol 15(Suppl 1):11S–18S

    PubMed  CAS  Google Scholar 

  • Svensson TH, Mathe JM, Nomikos GG, Schilström B (1998) Role of excitatory amino acids in the ventral tegmental area for central actions of non-competitive NMDA-receptor antagonists and nicotine. Aminosan 14:51–56

    CAS  Google Scholar 

  • Tucci S, Fernandez R, Baptista T, Murzi E, Hernandez L (1994) Dopamine increase in the prefrontal cortex correlates with reversal of haloperidol-induced catalepsy in rats. Brain Res Bull 35:125–133

    Article  PubMed  CAS  Google Scholar 

  • Volavka J, Cooper TB, Czobor P, Meisner M (1996) Effect of varying haloperidol plasma levels on negative symptoms in schizophrenia and schizoaffective disorder. Psychopharmacol Bull 32:75–79

    PubMed  CAS  Google Scholar 

  • Wadenberg M-L, Hicks PB (1999) The conditioned avoidance response test re-evaluated: Is it a sensitive test also for the detection of potentially atypical antipsychotics? Neurosci Biobehav Reviews 23:851–862

    Article  CAS  Google Scholar 

  • Wadenberg ML, Ericson E, Magnusson O, Ahlenius S (1990) Suppression of conditioned avoidance behavior by the local application of (−)sulpiride into the ventral, but not the dorsal, striatum of the rat. Biol Psychiatry 28:297–307

    Article  PubMed  CAS  Google Scholar 

  • Wadenberg ML, Kapur S, Soliman A, Jones C, Vaccarino F (2000) Dopamine D2 receptor occupancy predicts catalepsy and the suppression of conditioned avoidance response behavior in rats. Psychopharmacology (Berl) 150:422–429

    Article  CAS  Google Scholar 

  • Weinberger DR, Aloia MS, Goldberg TE, Berman KF (1994) The frontal lobes and schizophrenia. J Neuropsychiatry Clin Neurosci 6:419–427

    PubMed  CAS  Google Scholar 

  • Westerink BH, Kawahara Y, De Boer P, Geels C, De Vries J.B, Wikström H.V, Van Kalkeren A, Van Vliet B, Kruse CG, Long SK (2001) Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum. Eur J Pharmacol 412:127–138

    Article  PubMed  CAS  Google Scholar 

  • Wu WR, Li N, Sorg BA (2002) Regulation of medial prefrontal cortex dopamine by α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors. Neuroscience 114:507–516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swedish Research Council (project no. 4747), the Karolinska Institutet, and Johnson and Johnson Pharmaceutical Research and Development, USA. We thank Anna Malmerfelt and Ann-Chatrine Samuelsson for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torgny H. Svensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eltayb, A., Wadenberg, ML.G., Schilström, B. et al. Topiramate augments the antipsychotic-like effect and cortical dopamine output of raclopride. Naunyn Schmied Arch Pharmacol 372, 195–202 (2005). https://doi.org/10.1007/s00210-005-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-005-0014-5

Keywords

Navigation