Skip to main content
Log in

Tandospirone activates neuroendocrine and ERK (MAP kinase) signaling pathways specifically through 5-HT1A receptor mechanisms in vivo

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Tandospirone, an azapirone, is a selective serotonin1A (5-HT1A) receptor agonist. The effects of tandospirone on plasma hormones and on mitogen-activated protein (MAP) kinase activity in the brain of male rats were studied. Tandospirone produced a time- and dose-dependent increase in plasma levels of oxytocin, adrenocorticotropin (ACTH), corticosterone, and prolactin. The minimal dose of tandospirone that led to a significant elevation of plasma oxytocin, ACTH, and prolactin levels was 1.0 mg/kg (s.c.), while the minimal dose for corticosterone release was 3.0 mg/kg (s.c.). The ED50 of tandospirone was 1.3 mg/kg for oxytocin, 1.2 mg/kg for ACTH, 3.0 mg/kg for corticosterone, and 0.24 mg/kg for prolactin. Pretreatment with the specific 5-HT1A receptor antagonist WAY 100,635 (0.3 mg/kg, s.c.) completely blocked the effects of tandospirone on plasma levels of oxytocin, ACTH, and corticosterone but shifted the dose–response curve for prolactin to the right. Tandospirone injection (10 mg/kg, s.c.) stimulated the MAP kinase signaling cascade, specifically the phosphorylation of p42/44 extracellular signal-regulated kinase (ERK). Western blot analysis revealed a significant increase in phosphorylated ERK (p-ERK) levels in the hypothalamic paraventricular nucleus (PVN) as well as the dorsal raphé nucleus 5 min following tandospirone injection. These increases were blocked by pretreatment with WAY 100,635 (0.3 mg/kg). The results are the first evidence that systemic 5-HT1A receptor agonist administration produces a rapid increase in p-ERK levels in vivo, providing further insight into the signaling mechanisms of the 5-HT1A receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropin

CRH:

Corticotropin-releasing hormone

ERK:

Extracellular signal-regulated kinase

MAP:

Mitogen-activated protein

PVN:

Paraventricular nucleus

p-ERK:

Phosphorylated extracellular signal-regulated kinase

5-HT:

Serotonin1A

5-HT1Areceptor:

Serotonin1Areceptor

References

  • Andrade R, Nicoll RA (1987) Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiological responses on single neurons of the rat hippocampus. Naunyn-Schmiedebergs Arch Pharmacol 336:5–10

    CAS  PubMed  Google Scholar 

  • Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261–1265

    CAS  PubMed  Google Scholar 

  • Argyropoulos SV, Sandford JJ, Nutt DJ (2000) The psychobiology of anxiolytic drugs. II. Pharmacological treatments of anxiety. Pharmacol Ther 88:213–227

    Article  CAS  PubMed  Google Scholar 

  • Bagdy G, Kalogeras KT (1993) Stimulation of 5-HT1A and 5-HT2/5-HT1C receptors induce oxytocin release in the male rat. Brain Res 611:330–332

    Article  CAS  PubMed  Google Scholar 

  • Bagdy G, Makara GB (1994) Hypothalamic paraventricular nucleus lesions differentially affect serotonin-1A (5-HT1A) and 5-HT2 receptor agonist-induced oxytocin, prolactin, and corticosterone responses. Endocrinology 134:1127–1131

    Article  CAS  PubMed  Google Scholar 

  • Ben-Jonathan N (1985) Dopamine: a prolactin inhibiting hormone. Endocr Rev 6:564–589

    Google Scholar 

  • Blier P, Curet O, Chaput Y, de Montigny C (1991) Tandospirone and its metabolite, 1-(2-pyrimidinyl)-piperazine. II. Effects of acute administration of 1-PP and long-term administration of tandospirone on noradrenergic neurotransmission. Neuropharmacology 30:691–701

    Article  CAS  PubMed  Google Scholar 

  • Blier P, Lista A, de Montigny C (1993) Differential properties of pre- and postsynaptic 5-hydroxytryptamine1A receptors in the dorsal raphe and hippocampus. II. Effect of pertussis and cholera toxins. J Pharmacol Exp Ther 265:16–23

    CAS  PubMed  Google Scholar 

  • Carrasco GA, Van de Kar LD (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol 463:235–272

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Shen C, Meller E (2002) 5-HT1A receptor-mediated regulation of mitogen-activated protein kinase phosphorylation in rat brain. Eur J Pharmacol 452:155

    Article  CAS  PubMed  Google Scholar 

  • Clarke WP, Yocca FD, Maayani S (1996) Lack of 5-hydroxytryptamine1A-mediated inhibition of adenylyl cyclase in dorsal raphe of male and female rats. J Pharmacol Exp Ther 277:1259–1266

    CAS  PubMed  Google Scholar 

  • Cowen DS, Sowers RS, Manning DR (1996) Activation of a mitogen-activated protein kinase (ERK2) by the 5-hydroxytryptamine1A receptor is sensitive not only to inhibitors of phosphatidylinositol 3-kinase, but to an inhibitor of phosphatidylcholine hydrolysis. J Biol Chem 271:22297–22300

    Article  CAS  PubMed  Google Scholar 

  • Cowen PJ (1998) Neuroendocrine challenge tests: what can we learn from them? In: Van de Kar LD (ed) Methods in neuroendocrinology. CRC, Boca Raton, pp 205–223

    Google Scholar 

  • Crane JW, Shimizu KJ, Damjanoska KJ, Garcia F, Charumas V, Carrasco GA, Sullivan Hanley NR, D’Souza DN, Peterson B, Zhang Y, Van de Kar LD (2003) MAP kinase activation in the rat brain following systemic administration of a selective 5-HT1A receptor agonist [abstract]. Neurosci Abst 362.15

  • Eison MS (1989) The new generation of serotonergic anxiolytics: possible clinical roles. Psychopathology 22 [Suppl 1]:13–20

    PubMed  Google Scholar 

  • Feighner JP, Boyer WF (1989) Serotonin-1A anxiolytics: an overview. Psychopathology 22 [Suppl 1]:21–26

    PubMed  Google Scholar 

  • Fletcher A, Bill DJ, Bill SJ, Cliffe IA, Dover GM, Forster EA, Haskins JT, Jones D, Mansell HL, Reilly Y (1993) WAY100135: a novel, selective antagonist at presynaptic and postsynaptic 5-HT1A receptors. Eur J Pharmacol 237:283–291

    Article  CAS  PubMed  Google Scholar 

  • Fornal CA, Metzler CW, Gallegos RA, Veasey SC, McCreary AC, Jacobs BL (1996) WAY-100635, a potent and selective 5-hydroxytryptamine1A antagonist, increases serotonergic neuronal activity in behaving cats: comparison with (S)-WAY-100135. J Pharmacol Exp Ther 278:752–762

    CAS  PubMed  Google Scholar 

  • Forster EA, Cliffe IA, Bill DJ, Dover GM, Jones D, Reilly Y, Fletcher A (1995) A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. Eur J Pharmacol 281:81–88

    Article  CAS  PubMed  Google Scholar 

  • Fujino Y, Nakajima M, Tsuboi Y, Baba Y, Yamada T (2002) Clinical effectiveness of tandospirone citrate (5-HT1A agonist) on patients with progressive supranuclear palsy. Rinsho Shinkeigaku 42:42–44

    PubMed  Google Scholar 

  • Garnovskaya MN, Van Biesen T, Hawes B, Ramos SC, Lefkowitz RJ, Raymond JR (1996) Ras-dependent activation of fibroblast mitogen-activated protein kinase by 5-HT1A receptor via a G protein βgamma-subunit-initiated pathway. Biochemistry 35:13716–13722

    Article  CAS  PubMed  Google Scholar 

  • Godbout R, Chaput Y, Blier P, de Montigny C (1991) Tandospirone and its metabolite, 1-(2-pyrimidinyl)-piperazine. I. Effects of acute and long-term administration of tandospirone on serotonin neurotransmission. Neuropharmacology 30:679–690

    Article  CAS  PubMed  Google Scholar 

  • Grünschlag CR, Haas HL, Stevens DR (1997) 5-HT inhibits lateral entorhinal cortical neurons of the rat in vitro by activation of potassium channel-coupled 5-HT1A receptors. Brain Res 770:10–17

    Article  PubMed  Google Scholar 

  • Gundlah C, Pecins-Thompson M, Schutzer WE, Bethea CL (1999) Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus. Brain Res Mol Brain Res 63:325–339

    Article  CAS  PubMed  Google Scholar 

  • Hamik A, Oksenberg D, Fischette C, Peroutka SJ (1990) Analysis of tandospirone (SM-3997) interactions with neurotransmitter receptor binding sites. Biol Psychiatry 28:99–109

    Article  CAS  PubMed  Google Scholar 

  • Handley SL, McBlane JW (1993) 5HT drugs in animal models of anxiety. Psychopharmacology 112:13–20

    CAS  PubMed  Google Scholar 

  • Hanley NR, Van de Kar LD (2003) Serotonin and the neuroendocrine regulation of the hypothalamic–pituitary–adrenal axis in health and disease. Vitam Horm 66:189–255

    Article  CAS  PubMed  Google Scholar 

  • Hensler JG (2003) Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci 72:1665–1682

    Article  CAS  PubMed  Google Scholar 

  • Jones BJ, Blackburn TP (2002) The medical benefit of 5-HT research. Pharmacol Biochem Behav 71:555–568

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T (1988) Are receptors promiscuous? Intrinsic efficacy as a transduction phenomenon. Life Sci 43:1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Levy AD, Cabrera TM, Brownfield MS, Battaglia G, Van de Kar LD (1993) Long-term fluoxetine, but not desipramine, inhibits the ACTH and oxytocin responses to the 5-HT1A agonist 8-OH-DPAT in male rats. Brain Res 630:148–156

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Muma NA, Battaglia G, Van de Kar LD (1997) A desensitization of hypothalamic 5-HT1A receptors by repeated injections of paroxetine: reduction in the levels of Gi and Go proteins and neuroendocrine responses, but not in the density of 5-HT1A receptors. J Pharmacol Exp Ther 282:1581–1590

    CAS  PubMed  Google Scholar 

  • Li Q, Wichems C, Heils A, Lesch KP, Murphy DL (2000) Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 20:7888–7895

    Google Scholar 

  • Liposits Z, Phelix C, Paull WK (1987) Synaptic interaction of serotonergic axons and corticotropin releasing factor (CRF) synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. A light and electron microscopic immunocytochemical study. Histochemistry 86:541–549

    Article  CAS  PubMed  Google Scholar 

  • Lowry CA (2002) Functional subsets of serotonergic neurones: implications for control of the hypothalamic–pituitary–adrenal axis. J Neuroendocrinol 14:911–923

    Article  CAS  PubMed  Google Scholar 

  • Mannoury la Cour, Mestikawy SE, Rumajogee P, Bernard R, Miquel MC, Hamon M, Lanfumey L (2001) Regional differences in G proteins coupled to 5-HT1A receptors in the rat brain. Neurosci Abstr 380.7

  • Markstein R, Hoyer D, Engel G (1986) 5-HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedebergs Arch Pharmacol 333:335–341

    Article  CAS  PubMed  Google Scholar 

  • Martin KF, Mason R (1987) Isapirone is a partial agonist at 5-hydroxytryptamine 1A (5-HT1A) receptors in the rat hippocampus: electrophysiological evidence. Eur J Pharmacol 141:479–483

    Article  CAS  PubMed  Google Scholar 

  • Matheson GK, Knowles A, Gage D, Michel C, Guthrie D, Bauer C, Blackbourne J, Weinzapfel D (1997) Modification of hypothalamic–pituitary–adrenocortical activity by serotonergic agents in the rat. Pharmacology 55:59–65

    CAS  PubMed  Google Scholar 

  • Meller E, Goldstein M, Bohmaker K (1990) Receptor reserve for 5-hydroxtryptaimine1A-mediated inhibition of serotonin synthesis: possible relationship to anxiolytic properties of 5-hydroxytryptamine1A agonists. Mol Pharmacol 37:231–237

    CAS  PubMed  Google Scholar 

  • Meltzer HY, Simonovic M, Fang VS, Gudelsky GA (1982) Effect of buspirone on rat plasma prolactin levels and striatal dopamine turnover. Psychopharmacology 78:49–53

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Fleming R, Robertson A (1983) The effect of buspirone on prolactin and growth hormone secretion in man. Arch Gen Psychiatry 40:1099–1102

    CAS  PubMed  Google Scholar 

  • Miller LG, Thompson ML, Byrnes JJ, Greenblatt DJ, Shemer A (1992) Kinetics, brain uptake, and receptor binding of tandospirone and its metabolites 1-(2-pyrimidinyl)-piperazine. J Clin Psychopharmacol 12:341–345

    Google Scholar 

  • Miyata S, Hamamura T, Yoshinaga J, Nakamura Y, Imamura T, Hikiji A, Kuroda S (2001) Amelioration of frozen gait by tandospirone, a serotonin 1A agonist, in a patient with pure akinesia developing resistance to l-threo-3,4-dihydroxyphenylserine. Clin Neuropharmacol 24:232–234

    Article  CAS  PubMed  Google Scholar 

  • Mukhin YV, Garnovskaya MN, Collinsworth G, Pendergrass D, Magai T, Pinckney S, Greene EL, Raymond JR (2000) 5-Hydroxytryptamine1A receptor/Giβgamma stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in Chinese hamster ovary fibroblasts. Biochem J 347:61–67

    Article  CAS  PubMed  Google Scholar 

  • Mulroney SE, Skudlarek C, Shemer A, Lumpkin MD, Kellar KJ (1994) Tandospirone stimulates prolactin secretion in the rat by an action at serotonin-1A receptors. J Pharmacol Exp Ther 268:862–867

    CAS  PubMed  Google Scholar 

  • Nakayama T, Suhara T, Okubo Y, Ichimiya T, Yasuno F, Maeda J, Takano A, Saijo T, Suzuki K (2002) In vivo drug action of tandospirone at 5-HT(1A) receptor examined using positron emission tomography and neuroendocrine response. Psychopharmacology (Berl) 165:37–42

    Article  CAS  Google Scholar 

  • Ninan PT (1999) The functional anatomy, neurochemistry, and pharmacology of anxiety. J Clin Psychiatry 60 [Suppl 22]:12–17

    Google Scholar 

  • Penington NJ, Kelly JS (1993) Ionic dependence of a slow inward tail current in rat dorsal raphe neurones. J Physiol 464:33–48

    CAS  PubMed  Google Scholar 

  • Penington NJ, Kelly JS, Fox AP (1993) Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1A receptors on dorsal raphe neurones of the adult rat. J Physiol 469:387–405

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1985) Selective interaction of novel anxiolytics with 5-hydroxytryptamine1A receptors. Biol Psychiatry 20:971–979

    Google Scholar 

  • Raymond JR, Mukhin YV, Gettys TW, Garnovskaya MN (1999) The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br J Pharmacol 127:1751–1764

    CAS  PubMed  Google Scholar 

  • Routledge C (1996) Development of 5-HT1A receptor antagonists. Behav Brain Res 73:153–156

    Article  CAS  PubMed  Google Scholar 

  • Serres F, Li Q, Garcia F, Raap DK, Battaglia G, Muma NA, Van de Kar LD (2000) Evidence that Gz proteins couple to hypothalamic 5-HT1A receptors in vivo. J Neurosci 20:3095–3103

    Google Scholar 

  • Shimizu H, Hirose A, Tatsuno T, Nakamura M, Katsube J (1987) Pharmacological properties of SM-3997: a new anxioselective anxiolytic candidate. Jpn J Pharmacol 45:493–500

    CAS  PubMed  Google Scholar 

  • Sinton CM, Fallon SL (1988) Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur J Pharmacol 157:173–181

    Article  CAS  PubMed  Google Scholar 

  • Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1:3–9

    CAS  PubMed  Google Scholar 

  • Sprouse JS, Aghajanian GK (1988) Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropharmacology 27:707–715

    Article  CAS  PubMed  Google Scholar 

  • Steel RGD, Torrie JH (1960) Principles and procedures of statistics with special reference to the biological sciences. McGraw-Hill, New York

    Google Scholar 

  • Van de Kar LD (1997) 5-HT receptors involved in the regulation of hormone secretion. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors. Springer, Berlin Heidelberg New York, pp 537–562

    Google Scholar 

  • Van de Kar LD, Rittenhouse PA, Li Q, Levy AD, Brownfield MS (1995) Hypothalamic paraventricular, but not supraoptic neurons, mediate the serotonergic stimulation of oxytocin secretion. Brain Res Bull 36:45–50

    Article  PubMed  Google Scholar 

  • Vanhoose AM, Emery M, Jimenez L, Winder DG (2002) ERK activation by G-protein-coupled receptors in mouse brain is receptor identity-specific. J Biol Chem 277:9049–9053

    Article  CAS  PubMed  Google Scholar 

  • Watanabe H, Arahata Y, Tadokoro M, Kato T, Sobue G (2000) Effects of tandospirone citrate on frozen gait in patients with early stage of progressive supranuclear palsy, investigated by walk-induced activation single photon emission computed tomography method. Rinsho Shinkeigaku 40:1130–1132

    CAS  PubMed  Google Scholar 

  • Welner SA, de Montigny C, Desroches J, Desjardins P, Suranyi-Cadotte BE (1989) Autoradiographic quantification of serotonin1A receptors in rat brain following antidepressant drug treatment. Synapse 4:347–352

    CAS  PubMed  Google Scholar 

  • Wieland S, Lucki I (1990) Antidepressant-like activity of 5-HT1A agonists measured with the forced swim test. Psychopharmacology 101:497–504

    CAS  PubMed  Google Scholar 

  • Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351:357–373

    CAS  PubMed  Google Scholar 

  • Yamawaki S (1999) The use and development of anxiolytics in Japan. Eur Neuropsychopharmacol 9 [Suppl 6]:S413–S419

    Article  CAS  PubMed  Google Scholar 

  • Yoshino T, Nisijima K, Katoh S, Yui K, Nakamura M (2002) Tandospirone potentiates the fluoxetine-induced increases in extracellular dopamine via 5-HT1A receptors in the rat medial frontal cortex. Neurochem Int 40:355–360

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Lewander T (1997) Pharmacokinetic and pharmacodynamic studies of (R)-8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur Neuropsychopharmacol 7:165–172

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gray TS, D’Souza DN, Carrasco GA, Damjanoska KJ, Dudas B, Garcia F, Zainelli GM, Sullivan Hanley NR, Battaglia G, Muma NA, Van de Kar LD (2004) Desensitization of 5-HT1A receptors by 5-HT2A receptors in neuroendocrine neurons in vivo. J Pharmacol Exp Ther 310:59–66

    Article  CAS  PubMed  Google Scholar 

  • Zubiaur M, Fernandez O, Ferrero E, Salmeron J, Malissen B, Malavasi F, Sancho J (2002) CD38 is associated with lipid rafts and upon receptor stimulation leads to Akt/protein kinase B and Erk activation in the absence of the CD3-zeta immune receptor tyrosine-based activation motifs. J Biol Chem 277:13–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Unfortunately, during the preparation of this manuscript Louis “Loek” D. Van de Kar passed away. Loek’s love of science has been passed on to all who have been fortunate enough to work with him. He will be missed greatly. The authors gratefully acknowledge Dr. Julie Hensler for her helpful discussions and critical review of the manuscript. The authors would like to thank Vorarudee Charumas for her technical assistance and thoughtful questions. This research was supported in part by USPHS MH 58448 and NS34153

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole R. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, N.R., Crane, J.W., Damjanoska, K.J. et al. Tandospirone activates neuroendocrine and ERK (MAP kinase) signaling pathways specifically through 5-HT1A receptor mechanisms in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 371, 18–26 (2005). https://doi.org/10.1007/s00210-004-1005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-1005-7

Keywords

Navigation