Skip to main content
Log in

Three-dimensional isobolographic analysis of interactions between lamotrigine and clonazepam in maximal electroshock-induced seizures in mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The anticonvulsant effects of lamotrigine (LTG) and clonazepam (CZP) and combinations thereof against maximal electroshock (MES)-induced seizures in mice were investigated using three-dimensional (3D) isobolographic analysis. With this method, the doses of fixed-ratio combinations of the drugs (1:3, 1:1 and 3:1) that elicited 16, 50 and 84% of the maximum anticonvulsant effect were determined. Additionally, to evaluate the characteristics of interactions observed with 3D isobolography, the brain concentrations of both drugs were verified pharmacokinetically. The 3D isobolographic analysis showed that LTG and CZP combined at the fixed ratios of 3:1 and 1:1 interacted synergistically in the MES test for all anticonvulsant effects between 16% and 84% of maximum. In contrast, the combination of LTG and CZP at the fixed ratio of 1:3 showed only pure additivity for all estimated effects in 3D isobolography. Moreover, none of the examined antiepileptic drugs altered the brain concentrations of the coadministered drug, so the observed interactions in the MES test are of a pharmacodynamic nature. The 3D isobolographic findings suggest that in epilepsy therapy, increased efficacy of seizure control (synergistic interaction) might be achieved by using LTG and CZP in combination. In this study, some important problems and assumptions related to statistical analysis of data in 3D isobolography are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a–d

Similar content being viewed by others

References

  • Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141 [Erratum in Pharmacol Rev 41:422 (1990)]

    CAS  PubMed  Google Scholar 

  • Besag FM, Berry DJ, Pool F, Newbery JE, Subel B (1998) Carbamazepine toxicity with lamotrigine: pharmacokinetic or pharmacodynamic interaction? Epilepsia 39:183–187

    CAS  PubMed  Google Scholar 

  • Borowicz KK, Swiader M, Luszczki J, Czuczwar SJ (2002) Effect of gabapentin on the anticonvulsant activity of antiepileptic drugs against electroconvulsions in mice—an isobolographic analysis. Epilepsia 43:956–963

    Article  CAS  PubMed  Google Scholar 

  • Cadart M, Marchand S, Pariat C, Bouquet S, Couet W (2002) Ignoring pharmacokinetics may lead to isoboles misinterpretation: illustration with the norfloxacin-theophylline convulsant interaction in rats. Pharm Res 19:209–214

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Centonze D, Marfia GA, Pisani A, Bernardi G (1999) An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons. Br J Pharmacol 126:689–696

    CAS  PubMed  Google Scholar 

  • Cheung H, Kamp D, Harris E (1992) An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res 13:107–112

    Article  CAS  PubMed  Google Scholar 

  • Deckers CL, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, Patsalos PN, Renier WO, Van Rijn CM (2000) Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia 41:1364–1374

    CAS  PubMed  Google Scholar 

  • Fischer RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278

    Article  PubMed  Google Scholar 

  • Gasior M, Ungard JT, Witkin JM (1999) Preclinical evaluation of newly approved and potential antiepileptic drugs against cocaine-induced seizures. J Pharmacol Exp Ther 290:1148–1156

    CAS  PubMed  Google Scholar 

  • Gebhart GF (1992) Topical reviews: a new type of report in pain. Pain 49:1

    Article  CAS  PubMed  Google Scholar 

  • Gessner PK (1995) Isobolographic analysis of interactions: an update on applications and utility. Toxicology 105:161–179

    Article  CAS  PubMed  Google Scholar 

  • Glantz SA, Slinker BK (2001) Primer of applied regression and analysis of variance, 2nd edn. MacGraw-Hill, New York

    Google Scholar 

  • Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from response surface perspective. Pharmacol Rev 47:331–385

    CAS  PubMed  Google Scholar 

  • Haefely W (1989) Benzodiazepines. Mechanisms of action. In: Levy R, Mattson R, Meldrum B, Penry JK, Dreifuss FE (eds) Antiepileptic drugs, 3rd edn. Raven, New York, pp 721–734

    Google Scholar 

  • Jozwiak S, Terczynski A (2000) Open study evaluating lamotrigine efficacy and safety in add-on treatment and consecutive monotherapy in patients with carbamazepine- or valproate-resistant epilepsy. Seizure 9:486–492

    Article  CAS  PubMed  Google Scholar 

  • Kanzawa F, Nishio K, Fukuoka K, Fukuda M, Kunimoto T, Saijo N (1997) Evaluation of synergism by a novel three-dimensional model for the combined action of cisplatin and etoposide on the growth of a human small-cell lung-cancer cell line, SBC-3. Int J Cancer 71:311–319

    Article  CAS  PubMed  Google Scholar 

  • Leach MJ, Baxter MG, Critchley MA (1991) Neurochemical and behavioral aspects of lamotrigine. Epilepsia 32 (Suppl 2):S4–S8

    Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  Google Scholar 

  • Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    CAS  PubMed  Google Scholar 

  • Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181

    Article  PubMed  Google Scholar 

  • Löscher W, Fassbender CP, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res 8:79–94

    Article  PubMed  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2003) Isobolographic and subthreshold methods in the detection of interactions between oxcarbazepine and conventional antiepileptics-a comparative study. Epilepsy Res 56:27–42

    Article  CAS  PubMed  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2004) Isobolographic profile of interactions between tiagabine and gabapentin: a preclinical study. Naunyn-Schmiedeberg’s Arch Pharmacol 369:434–446

    Article  CAS  Google Scholar 

  • Luszczki JJ, Czuczwar M, Kis J, Krysa J, Pasztelan I, Swiader M, Czuczwar SJ (2003a) Interactions of lamotrigine with topiramate and first-generation antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:1003–1013

    Article  CAS  PubMed  Google Scholar 

  • Luszczki JJ, Borowicz KK, Swiader M, Czuczwar SJ (2003b) Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:489–499

    Article  CAS  PubMed  Google Scholar 

  • Luszczki JJ, Swiader M, Czuczwar M, Kis J, Czuczwar SJ (2003c) Interactions of tiagabine with some antiepileptics in the maximal electroshock in mice. Pharmacol Biochem Behav 75:319–327

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RL (2002) Benzodiazepine. Mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS, Perucca E (eds) Antiepileptic drugs, 5th edn. Lippincott, Philadelphia, pp 179–186

    Google Scholar 

  • McLean MJ, Macdonald RL (1988) Benzodiazepines, but not beta carbolines, limit high frequency repetitive firing of action potentials of spinal cord neurons in cell culture. J Pharmacol Exp Ther 244:789–795

    CAS  PubMed  Google Scholar 

  • Pöch G (1993) Combined effects of drugs and toxic agents. Modern evaluation in theory and practice. Springer, Wien

    Google Scholar 

  • Porreca F, Jiang Q, Tallarida RJ (1990) Modulation of morphine antinociception by peripheral [Leu5]enkephalin: a synergistic interaction. Eur J Pharmacol 179:463–468

    Article  CAS  PubMed  Google Scholar 

  • Prichard MN, Prichard LE, Baguley WA, Nassiri MR, Shipman C (1991) Three-dimensional analysis of the synergistic cytotoxicity of gancyclovir and zidovudine. Antimicrob Agents Chemother 35:1060–1065

    CAS  PubMed  Google Scholar 

  • Prichard MN, Prichard LE, Shipman C (1993) Strategic design and tree-dimensional analysis of antiviral drug combinations. Antimicrob Agents Chemother 37:540–545

    CAS  PubMed  Google Scholar 

  • Stephen LJ, Brodie MJ (2002) Seizure freedom with more than one antiepileptic drug. Seizure 11:349–351

    Article  PubMed  Google Scholar 

  • Sühnel J (1992) Zero interaction response surfaces, interaction functions and difference response surfaces for combinations of biologically active agents. Arzneimittelforschung 42:1251–1258

    PubMed  Google Scholar 

  • Sühnel J (1998) Parallel dose-response curves in combination experiments. Bull Math Biol 60:197–213

    Article  PubMed  Google Scholar 

  • Tallarida RJ (1992) Statistical analysis of drug combinations for synergism. Pain 49:93–97

    Article  CAS  PubMed  Google Scholar 

  • Tallarida RJ (2000) Drug synergism and dose-effect data analysis. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmcol Exp Ther 298:865–872

    CAS  Google Scholar 

  • Tallarida RJ (2002) The interaction index: a measure of drug synergism. Pain 98:163–168

    Article  CAS  PubMed  Google Scholar 

  • Tallarida RJ, Stone DJ, McCary JD, Raffa RB (1999) Response surface analysis of synergism between morphine and clonidine. J Pharmcol Exp Ther 289:8–13

    CAS  Google Scholar 

  • Wang SJ, Huang CC, Hsu KS, Tsai JJ, Gean PW (1996) Inhibition of N-type calcium currents by lamotrigine in rat amygdala neurones. Neuroreport 7:3037–3040

    CAS  PubMed  Google Scholar 

  • Wang SJ, Tsai JJ, Gean PW (1998) Lamotrigine inhibits depolarization-evoked Ca++ influx in dissociated amygdala neurons. Synapse 29:355–362

    Article  CAS  PubMed  Google Scholar 

  • White HS, Woodhead JH, Wilcox KS, Stables JP, Kupferberg HJ, Wolf HH (2002) Discovery and preclinical development of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS, Perucca E (eds) Antiepileptic drugs, 5th edn. Lippincott, Philadelphia, pp 36–48

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (PW 447/2002-2004) from the Skubiszewski Medical University of Lublin. The authors thank Mr W. Zgrajka (Institute of Agricultural Medicine, Lublin, Poland) for the skilful determination of the brain concentrations of LTG. Dr J.J. Luszczki is a recipient of the Fellowship for Young Researchers from the Foundation for Polish Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarogniew J. Luszczki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luszczki, J.J., Czuczwar, S.J. Three-dimensional isobolographic analysis of interactions between lamotrigine and clonazepam in maximal electroshock-induced seizures in mice. Naunyn-Schmiedeberg's Arch Pharmacol 370, 369–380 (2004). https://doi.org/10.1007/s00210-004-0983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0983-9

Keywords

Navigation