Skip to main content
Log in

Isobolographic profile of interactions between tiagabine and gabapentin: a preclinical studyA,B

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Combining the use of some antiepileptic drugs (AEDs) in patients with epilepsy can result in interactions of a pharmacodynamic or pharmacokinetic character. To quantify the profile of interactions between tiagabine (TGB) and gabapentin (GBP), two novel AEDs influencing the GABAergic neurotransmitter system, an isobolographic analysis was performed in the maximal electroshock seizure threshold (MEST), pentylenetetrazole (PTZ)-induced seizure and chimney tests in mice. TGB and GBP injected alone dose-dependently raised the electroconvulsive threshold in mice, which allowed the evaluation of TID20 (the dose increasing the threshold by 20% compared with controls) in the MEST-test. TID20 values for TGB and GBP alone were 4.3 mg/kg and 70 mg/kg, respectively. On the basis of isobolographic calculations, TGB was also co-administered with GBP at three fixed ratios (1:3, 1:1 and 3:1) of their respective TID20 doses. The isobolographic analysis showed that all three combinations of TGB with GBP exerted supra-additive (synergistic) interactions in the MEST-test in mice. Likewise, TGB and GBP injected alone suppressed the clonic phase of PTZ-induced seizures, with (effective) doses protecting 50% of the animals tested against clonic convulsions (ED50) for TGB and GBP of 0.9 and 199.3 mg/kg, respectively. Moreover, the two-drug combinations at the same fixed ratios of 1:3, 1:1 and 3:1 in PTZ-induced seizures also showed a tendency towards supra-additive (synergistic) interactions. The adverse (neurotoxic) effects produced by TGB and GBP alone or in combinations at the same fixed ratios of 1:3, 1:1 and 3:1 were evaluated in the chimney test. The (toxic) doses evoking motor impairment in 50% of animals tested (TD50) for TGB and GBP alone were 13.6 and 979.6 mg/kg, respectively. The isobolographic analysis showed the interactions between the AEDs to be additive in this test. From a preclinical point of view, the interactions observed experimentally showed that the combination of TGB and GBP, due to a synergistic anti-seizure activity of the drugs, might provide adequate seizure control in patients with refractory epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141 (Erratum p 422)

    CAS  PubMed  Google Scholar 

  • Boissier JR, Tardy J, Diverres JC (1960) Une nouvelle méthode simple pour explorer l’action tranquilisante: le test de la cheminée. Med Exp (Basel) 3:81–84

    Google Scholar 

  • Borowicz KK, Swiader M, Luszczki J, Czuczwar SJ (2002) Effect of gabapentin on the anticonvulsant activity of antiepileptic drugs against electroconvulsions in mice—an isobolographic analysis. Epilepsia 43:956–963

    Article  CAS  PubMed  Google Scholar 

  • Bourgeois BFD (1986) Antiepileptic drug combinations and experimental background: the case of phenobarbital and phenytoin. Naunyn-Schmiedeberg’s Arch Pharmacol 333:406–411

    Google Scholar 

  • Bourgeois BFD (1988) Anticonvulsant potency and neurotoxicity of valproate alone and in combination with carbamazepine or phenobarbital. Clin Neuropharmacol 11:348–359

    CAS  PubMed  Google Scholar 

  • Bourgeois BFD (2002) Reducing overtreatment. Epilepsy Res 52:53–60

    Article  PubMed  Google Scholar 

  • Brodie MJ (2001) Do we need any more new antiepileptic drugs? Epilepsy Res 45:3–6

    Article  CAS  PubMed  Google Scholar 

  • Cadart M, Marchand S, Pariat C, Bouquet S, Couet W (2002) Ignoring pharmacokinetics may lead to isoboles misinterpretation: illustration with the norfloxacin-theophylline convulsant interaction in rats. Pharm Res 19:209–214

    Article  CAS  PubMed  Google Scholar 

  • Czuczwar SJ, Borowicz KK (2002) Polytherapy in epilepsy: the experimental evidence. Epilepsy Res 52:15–23

    Article  CAS  PubMed  Google Scholar 

  • Czuczwar SJ, Patsalos PN (2001) The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs 15:339–350

    CAS  PubMed  Google Scholar 

  • Czuczwar SJ, Przesmycki K (2001) Felbamate, gabapentin and topiramate as adjuvant antiepileptic drugs in experimental models of epilepsy. Pol J Pharmacol 53:65–68

    CAS  PubMed  Google Scholar 

  • Deckers CLP (2002) Overtreatment in adults with epilepsy. Epilepsy Res 52:43–52

    Article  CAS  PubMed  Google Scholar 

  • Deckers CLP, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, Patsalos PN, Renier WO, van Rijn CM (2000) Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia 41:1364–1374

    CAS  PubMed  Google Scholar 

  • Deckers CLP, Genton P, Sills GJ, Schmidt D (2003) Current limitations of antiepileptic drug therapy: a conference review. Epilepsy Res 53:1–17

    Article  CAS  PubMed  Google Scholar 

  • Errante LD, Petroff OAC (1999) Effects of gabapentin on rat brain GABA, glutamate and glutamine. (abstract) Epilepsia 40 (Suppl. 7):19

  • Errante LD, Williamson A, Spencer DD, Petroff OA (2002) Gabapentin and vigabatrin increase GABA in the human neocortical slice. Epilepsy Res 49:203–210

    Article  CAS  PubMed  Google Scholar 

  • Gasior M, Ungard JT, Witkin JM (1999) Preclinical evaluation of newly approved and potential antiepileptic drugs against cocaine-induced seizures. J Pharmacol Exp Ther 290:1148–1156

    CAS  PubMed  Google Scholar 

  • Gee NS, Brown JP, Dissanayake UK, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (neurontin), binds to the α2δ subunit of a calcium channel. J Biol Chem 271:5768–5776

    CAS  PubMed  Google Scholar 

  • Gessner PK (1995) Isobolographic analysis of interactions: an update on applications and utility. Toxicology 105:161–179

    Article  CAS  PubMed  Google Scholar 

  • Goldlust A, Su T, Welty DF, Taylor CP, Oxender DL (1995) Effects of the anticonvulsant drug gabapentin on enzymes in the metabolic pathways of glutamate and GABA. Epilepsy Res 22:1–11

    CAS  PubMed  Google Scholar 

  • Gustavson LE, Mengel HB (1995) Pharmacokinetics of tiagabine, a gamma-aminobutyric acid-uptake inhibitor, in healthy subjects after single and multiple doses. Epilepsia 36:605–611

    CAS  PubMed  Google Scholar 

  • Holmes GL (2002) Overtreatment in children with epilepsy. Epilepsy Res 52:35–42

    Article  CAS  PubMed  Google Scholar 

  • Kellinghaus C, Dziewas R, Lüdemann P (2002) Tiagabine-related non-convulsive status epilepticus in partial epilepsy: three case reports and a review of the literature. Seizure 11:243–249

    Article  PubMed  Google Scholar 

  • Kerry DW, Hamilton-Miller JMT, Brumfitt W (1975) Trimethoprim and rifampicin: in vitro activities separately and in combination. J Antimicrob Chemother 1:417–427

    CAS  PubMed  Google Scholar 

  • Klitgaard H, Knudsen ML, Jackson HC (1993) Synergism between drugs with different mechanisms of action against audiogenic seizures in DBA/2 mice. (abstract) Epilepsia 34 (Suppl. 6):93–94

  • Kwan P, Brodie MJ (2000a) Epilepsy after the first drug fails: substitution or add-on? Seizure 9:464–468

    Article  CAS  PubMed  Google Scholar 

  • Kwan P, Brodie MJ (2000b) Early identification of refractory epilepsy. New Eng J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  • Kwan P, Brodie MJ (2002) Refractory epilepsy: a progressive, intractable but preventable condition? Seizure 11:77–84

    Article  PubMed  Google Scholar 

  • Leach JP (2000) Antiepileptic drugs: safety in numbers? Seizure 9:170–178

    Article  CAS  PubMed  Google Scholar 

  • Leach JP, Brodie MJ (1994) Synergism with GABAergic drugs in refractory epilepsy. Lancet 343:1650

    Article  CAS  PubMed  Google Scholar 

  • Leach JP, Sills GJ, Butler E, Forrest G, Thompson GG, Brodie MJ (1997) Neurochemical actions of gabapentin in mouse brain. Epilepsy Res 27:175–180

    Article  CAS  PubMed  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  Google Scholar 

  • Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    CAS  PubMed  Google Scholar 

  • Löscher W (2002) Current status and future directions in the pharmacotherapy of epilepsy. Trends Pharmacol Sci 23:113–118

    Article  PubMed  Google Scholar 

  • Löscher W, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Res 9:1–10

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181

    PubMed  Google Scholar 

  • Löscher W, Schmidt D (2002) New horizons in the development of antiepileptic drugs. Epilepsy Res 50:3–16

    Article  PubMed  Google Scholar 

  • Löscher W, Wauquier A (1996) Use of animal models in developing guiding principles for polypharmacy in epilepsy. Epilepsy Res Suppl 11:61–65

    PubMed  Google Scholar 

  • Löscher W, Fassbender CP, Nolting B (1991a) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res 8:79–94

    PubMed  Google Scholar 

  • Löscher W, Hönack D, Fassbender CP, Nolting B (1991b) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazole seizure models. Epilepsy Res 8:171–189

    Article  PubMed  Google Scholar 

  • Luszczki JJ, Czuczwar SJ (2003) Isobolographic and subthreshold methods in the detection of interactions between oxcarbazepine and conventional antiepileptics—a comparative study. Epilepsy Res 56:27–42

    Article  CAS  PubMed  Google Scholar 

  • Luszczki J, Swiader M, Czuczwar M, Kis J, Czuczwar SJ (2003a) Interactions of tiagabine with some antiepileptics in the maximal electroshock in mice. Pharmacol Biochem Behav 75:319–327

    Article  CAS  PubMed  Google Scholar 

  • Luszczki JJ, Borowicz KK, Swiader M, Czuczwar SJ (2003b) Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:489–499

    Article  CAS  PubMed  Google Scholar 

  • Luszczki JJ, Czuczwar M, Kis J, Krysa J, Pasztelan I, Swiader M, Czuczwar SJ (2003c) Interactions of lamotrigine with topiramate and first-generation antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 44:1001–1011

    Article  Google Scholar 

  • Luszczki JJ, Swiader M, Parada-Turska J, Czuczwar SJ (2003d) Tiagabine synergistically interacts with gabapentin in the electroconvulsive threshold test in mice. Neuropsychopharmacology 28:1817–1830

    Article  CAS  PubMed  Google Scholar 

  • Meldrum BS (1995) Epilepsy. Taking up GABA again. Nature 376:122–123; 174–177

    Article  CAS  PubMed  Google Scholar 

  • Murphy K, Delanty N (2000) Primary generalized epilepsies. Curr Treat Options Neurol 2:527–542

    PubMed  Google Scholar 

  • Olsen RW, Avoli M (1997) GABA and epileptogenesis. Epilepsia 38:399–407

    CAS  PubMed  Google Scholar 

  • Patsalos PN, Fröscher W, Pisani F, van Rijn CM (2002) The importance of drug interactions in epilepsy therapy. Epilepsia 43:365–385

    Article  CAS  PubMed  Google Scholar 

  • Perucca E (1995) Pharmacological principles as a basis for polytherapy. Acta Neurol Scand 92 (Suppl 162):31–34

    Google Scholar 

  • Perucca E (1999) The clinical pharmacokinetics of the new antiepileptic drugs. Epilepsia 40 (Suppl. 9):S7–S13

    Google Scholar 

  • Perucca E (2002) Overtreatment in epilepsy: adverse consequences and mechanisms. Epilepsy Res 52:25–33

    Article  CAS  PubMed  Google Scholar 

  • Perucca E, Gram L, Avanzini G, Dulac O (1998) Antiepileptic drugs as a cause of worsening seizures. Epilepsia 39:5–17

    CAS  PubMed  Google Scholar 

  • Petroff OAC, Hyder F, Rothman DL, Mattson RH (2000) Effects of gabapentin on brain GABA, homocarnosine, and pyrrolidinone in epilepsy. Epilepsia 41:675–680

    CAS  PubMed  Google Scholar 

  • Porreca F, Jiang Q, Tallarida RJ (1990) Modulation of morphine antinociception by peripheral [Leu5]enkephalin: a synergistic interaction. Eur J Pharmacol 179:463–468

    Article  CAS  PubMed  Google Scholar 

  • Rambeck B, Sprecht U, Wolf P (1996) Pharmacokinetic interactions of the new antiepileptic drugs. Clin Pharmacokinetics 31:309–324

    CAS  Google Scholar 

  • Schapel GJ, Chadwick D (1996) Tiagabine and non-convulsive status epilepticus. Seizure 5:153–156

    CAS  PubMed  Google Scholar 

  • Schmidt D (1996) Modern management of epilepsy: Rational polytherapy. Baillieres Clin Neurol 5:757–763

    CAS  PubMed  Google Scholar 

  • Schmidt D (2002) Strategies to prevent overtreatment with antiepileptic drugs in patients with epilepsy. Epilepsy Res 52:61–69

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Elger C, Holmes GL (2002) Pharmacological overtreatment in epilepsy. Mechanisms and management. Epilepsy Res 52:3–14

    Article  PubMed  Google Scholar 

  • Stephen LJ, Brodie MJ (2002) Seizure freedom with more that one antiepileptic drug. Seizure 11:349–351

    Article  PubMed  Google Scholar 

  • Tallarida RJ (1992) Statistical analysis of drug combinations for synergism. Pain 49:93–97

    CAS  PubMed  Google Scholar 

  • Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmacol Exp Ther 298:865–872

    CAS  PubMed  Google Scholar 

  • Tallarida RJ (2002) The interaction index: a measure of drug synergism. Pain 98:163–168

    Article  CAS  PubMed  Google Scholar 

  • Tallarida RJ, Stone DJ, Raffa RB (1997) Efficient designs for studying synergistic drug combinations. Life Sci 61:PL417–PL425

    Article  CAS  Google Scholar 

  • Taylor CP, Gee NS, Su TZ, Kocsis JD, Welty DF, Brown JP, Dooley DJ, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29:233–249

    CAS  PubMed  Google Scholar 

  • Treiman DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42 (Suppl. 3):8–12

  • Vollmer KO, Hodenberg A von, Kölle EU (1986) Pharmacokinetics and metabolism of gabapentin in rat, dog and man. Arzneimittelforschung 36:830–839

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant No. 6P05D09821 from the State Committee for Scientific Research, Warsaw, Poland. Dr. J.J. Luszczki is a recipient of the Fellowship for Young Researchers from the Foundation for Polish Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarogniew J. Luszczki.

Additional information

AThe results of the MEST-test in this study were presented at the “3rd Forum of European Neuroscience”, Paris, France, 13–17 July, 2002 (abstract 559).

BThe results of the PTZ-test in this study were presented at the conference: “Thirty years of cooperation between German and Polish pharmacologists—new perspectives in the Common Europe”, Bialowieza, Poland, 18–21 September, 2003 (abstract: Pol J Pharmacol, 2003, 55:500–501).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luszczki, J.J., Czuczwar, S.J. Isobolographic profile of interactions between tiagabine and gabapentin: a preclinical studyA,B . Naunyn-Schmiedeberg's Arch Pharmacol 369, 434–446 (2004). https://doi.org/10.1007/s00210-004-0867-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0867-z

Keywords

Navigation