Skip to main content
Log in

The α2-adrenoceptor antagonist atipamezole potentiates anti-Parkinsonian effects and can reduce the adverse cardiovascular effects of dopaminergic drugs in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The present experiments investigated the effects of the specific α2-adrenoceptor antagonist atipamezole, alone and in combination with a dopamine agonist, on motor function in rats with a unilateral 6-hydroxydopamine lesion of the nigro-striatal pathway and on exploratory behaviour and cardiovascular function in rats equipped with telemetry transmitters. Dexmedetomidine, an α2-adrenoceptor agonist and the α2-adrenoceptor antagonists idazoxan and yohimbine were used as reference compounds. In the unilaterally lesioned animals, direct dopamine agonists, such as apomorphine, induce contralateral turning behaviour. Indirect agonists, such as amphetamine, induce ipsilateral circling in the animals. Atipamezole (0.3 mg/kg s.c) potentiated and dexmedetomidine (10 µg/kg s.c.) decreased contralateral circling evoked by apomorphine (50 µg/kg s.c.) and by l-3,4-dihydroxyphenylalanine (L-DOPA, 5 mg/kg i.p.). Atipamezole also prolonged the duration of action of L-DOPA. Atipamezole dose-dependently induced ipsilateral turning behaviour and potentiated turning induced by amphetamine (1 mg/kg i.p.). The α1-adrenoceptor antagonist prazosin (0.1 mg/kg i.p.) partially antagonised the effect of amphetamine and had a strong inhibitory effect on the atipamezole-induced potentiation of the amphetamine response. Prazosin did not have any major effect on either the apomorphine response itself or on the potentiation of the apomorphine response by atipamezole. This suggests that atipamezole can modulate motor function both indirectly, by stimulating the release of noradrenaline and directly, by blocking postsynaptic α2-adrenoceptors in neurones other than noradrenergic nerves. The α2-adrenoceptor antagonists, when tested at comparably effective central α2-adrenoceptor antagonising doses in a rat mydriasis model: atipamezole 0.3 mg/kg s.c., idazoxan 1 mg/kg s.c. and yohimbine 3 mg/kg s.c., all induced ipsilateral turning behaviour and potentiated apomorphine-induced contralateral circling. The effects of the α2-adrenoceptor antagonists were in general similar in these experiments. In habituated non-lesioned rats equipped with telemetry transmitters, apomorphine (50 µg/kg s.c.) decreased blood pressure in the home cage and in an open-field test. It also decreased spontaneous motor activity in the open field. Neither atipamezole (0.3 mg/kg s.c.) nor idazoxan (1 mg/kg s.c.) had any effect on blood pressure when given alone, but reversed the apomorphine-induced decrease in blood pressure. Atipamezole also diminished apomorphine-induced sedation in the open-field test. In conclusion, atipamezole improved the efficacy of L-DOPA and apomorphine in an animal model of Parkinson’s disease and also reduced adverse dopaminergic effects on vigilance and on cardiovascular function. These results suggest that an investigation of the effects of specific α2-adrenoceptor antagonists in Parkinson’s disease patients is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2

Similar content being viewed by others

References

  • Brannan T, Martinez-Tica J, Yahr MD (1991) Effect of yohimbine on brain monoamines: an in vivo study. J Neural Transm 3:81–87

    CAS  Google Scholar 

  • Brefel-Courbon C, Thalamas C, Peyro Saint Paul H, Senard J-M, Montastruc J-L, Rascol O (1998) α2-Adrenoceptor antagonists. A new approach to Parkinson’s disease? CNS Drugs 10:189–207

    CAS  Google Scholar 

  • Brotchie JM (1998) Adjuncts to dopamine replacement: a pragmatic approach to reducing the problem of dyskinesia in the Parkinson’s disease. Mov Disord 13:871–876

    CAS  PubMed  Google Scholar 

  • Brown WD, Taylor MD, Roberts AD, Oakes TR, Schueller MJ, Holden JE, Malischke BS, DeJesus OT, Nicles RJ (1999) FluoroDOPA PET shows the nondopamineergic as well as dopaminergic destinations of levodopa. Neurology 53:1212–1218

    CAS  PubMed  Google Scholar 

  • Bucheler M, Hadamek K, Hein L (2002) Two α2-adrenergic receptors subtypes, α2A and α2C, inhibit transmitter release in the brain of gene targeted mice. Neuroscience 109:819–826

    Article  CAS  PubMed  Google Scholar 

  • Calne DB, Brennan J, Spiers ASD, Stern GM (1970) Hypotension caused by L-DOPA. Br Med J:474–475

    Google Scholar 

  • Chamienia AL, Johns EJ (1996) The cardiovascular and renal functional responses to the 5-HT1A receptor agonist flesinoxan in two rat models of hypertension. Br J Pharmacol 118:1891–1898

    CAS  PubMed  Google Scholar 

  • Chopin P, Colpaert FC, Marien M (1999) Effects of alpha-2 adrenoceptor agonists and antagonists on circling behavior in rats with unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway. J Pharmacol Exp Ther 288:789–804

    Google Scholar 

  • Dickinson SL, Gadie B, Tulloch IF (1990) Specific α2-adrenoreceptor antagonists induce behavioural activation in the rat. J Psychopharmacol 4:90–99

    CAS  Google Scholar 

  • Dooley DJ, Bittiger H, Hauser KL, Bischoff SF, Waldmeier PC (1983) Alteration of central alpha2- and beta-adrenergic receptors in the rat after DSP-4, a selective noradrenergic neurotoxin. Neuroscience 9:889–898

    CAS  PubMed  Google Scholar 

  • Eldrup E, Morgensen P, Jacobsen J, Pakkenberg H, Christensen NJ (1995) CSF and plasma concentrations of free norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), 3,4-dihydroxyphenylalanine (DOPA), and epinephrine in Parkinson’s disease. Acta Neurol Scand 92:116–121

    CAS  PubMed  Google Scholar 

  • Engberg G, Eriksson E (1991) Effects of α2-adrenoceptor agonists on locus coeruleus firing rate and brain noradrenaline turnover in N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-treated rats. Naunyn-Schmiedeberg’s Arch Pharmacol 343:472–477

    Google Scholar 

  • Everett GM, Borcherding JW (1970) L-DOPA: effects on concentrations of dopamine, norepinephrine, and serotonin in brains of mice. Science 168:849–850

    CAS  Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271

    CAS  PubMed  Google Scholar 

  • Gaspar P, Duyckaerts C, Alvarez C, Javoy-Agid F, Berger B (1991) Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann Neurol 30:365–374

    CAS  PubMed  Google Scholar 

  • German DC, Kebreten FM, White CL, Woodward DJ, McIntire, Smith WK, Kalaria RN, Mann MA (1992) Disease specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676

    CAS  PubMed  Google Scholar 

  • Gomez-Mancilla B, Bedard PJ (1993) Effect of nondopaminergic drugs on L-DOPA-induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol 16:418–427

    CAS  PubMed  Google Scholar 

  • Grenhoff J, Svensson TH (1988) Clonidine regularizes substantia nigra dopamine cell firing. Life Sci 42:2003–2009

    Article  CAS  PubMed  Google Scholar 

  • Haapalinna A, Viitamaa T, MacDonald E, Savola J-M, Tuomisto L, Virtanen R, Heinonen E (1997) Evaluation of the effects of a specific α2-adrenoceptor antagonist, atipamezole, on α1- and α2-adrenoceptor subtype binding, brain neurochemistry and behaviour in comparison with yohimbine. Naunyn-Schmiedeberg’s Arch Pharmacol 356:570–582

  • Jellinger KA (1999) Post mortem studies in Parkinson’s disease—is it possible to detect brain areas for specific symptoms? J Neural Transm 56:1–29

    CAS  PubMed  Google Scholar 

  • Juhila J, Haapalinna A, Sirviö J, Sallinen J, Honkanen A, Korpi ER, Scheinin M (2003) The α2-adrenoceptor antagonist atipamezole reduces the development and expression of d-amphetamine-induced behavioural sensitization. Naunyn-Schmiedeberg’s Arch Pharmacol 367:274–280

    Google Scholar 

  • Lategan AJ, Marien MR, Colpaert FC (1992) Suppression of nigro striatal and mesolimbic dopamine release in vivo following noradrenaline depletion by DSP-4: a microdialysis study. Life Sci 50:995–999

    Article  CAS  PubMed  Google Scholar 

  • Llado J, Esteban S, Garcia-Sevilla JA (1996) The α2-adrenoceptor antagonist idazoxan is an agonist at 5-HT1A autoreceptors modulating serotonin synthesis in the rat brain in vivo. Neurosci Lett 218:111–114

    PubMed  Google Scholar 

  • Mavridis M, Colpaert FC, Millan MJ (1991) Differential modulation of (+)-amphetamine-induced rotation in unilateral substantia nigra-lesioned rats by α1 as compared to α2 agonists and antagonists. Brain Res 562:216–224

    CAS  PubMed  Google Scholar 

  • McCall RB, Patel BN, Harris LT (1987) Effects of serotonin1 and serotonin2 receptor agonists and antagonists on blood pressure, heart rate and sympathetic nerve activity. J Pharmacol Exp Ther 242:1152–1159

    CAS  PubMed  Google Scholar 

  • McCall RB, Harris LT, King KA (1991) Sympatholytic action of yohimbine mediated by 5-HT1A receptors. Eur J Pharmacol 199:263–265

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas J-P, Cogé F, Galizzi J-P, Boutin JA, Rivet J-M, Dekeyne A, Gobert A (2000) Agonist and antagonist actions of yohimbine as compared to fluparoxan at α2-adrenergic receptors (AR)s, serotonin (5-HT)1A, 5-HT1B, 5-HT1D and dopamine D2 and D3 receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse 35:79–95

    Article  CAS  PubMed  Google Scholar 

  • Newman-Tancredi A, Tancredi J-P, Audinot V, Gavaudan S, Verrièle L, Touzard M, Chaput C, Richard N, Millan M (1998) Actions of alpha-2 adrenoceptor ligands at alpha-2A and 5-HT-1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha-2A adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 358:197–206

    Google Scholar 

  • Olanow WC, Watts RL, Koller WC (2001) An algorithm (decision tree) for the management of Parkinson’s disease (2001): treatment guidelines. Neurology 56:S1–S88

    CAS  Google Scholar 

  • Ordway GA (1995) Effect of noradrenergic lesions on subtypes of α2-adrenoceptors in rat brain. J Neurochem 64:1118–1126

    CAS  PubMed  Google Scholar 

  • Papeschi R (1974) An investigation on the behavioral and hypothermic effects of yohimbine: interaction with drugs affecting central and peripheral monoamines. Arch Int Pharmacodyn 208:61–80

    CAS  PubMed  Google Scholar 

  • Parkes JD, Tarsy D, Marsden CD, Bovill KT, Phipps JA, Rose P, Asselman P (1975) Amphetamines in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatr 38:232–237

    CAS  PubMed  Google Scholar 

  • Parkinson Study Group (2000) Pramipexole vs levodopa as initial treatment for Parkinson’s disease—a randomised controlled trial. JAMA 284:1931–1938

    PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd Edn. Academic Press, New York

  • Pettibone DJ, Pfleuger AB, Totaro JA (1985) Comparison of the effects of recently developed α2-adrenergic antagonists with yohimbine and rauwolscine on monoamine synthesis in rat brain. Biochem Pharmacol 34:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Raiteri M, Maura G, Folghera S, Cavazzani P, Andrioli GC, Schlicker E, Schalnus R, Göthert M (1990) Modulation of 5-hydroxytryptamine release by presynaptic inhibitory α2-adrenoceptors in the human cerebral cortex. Naunyn-Schmiedeberg’s Arch Pharmacol 342:508–512

    Google Scholar 

  • Rascol O, Arnulf I, Brefel C (1997) L-DOPA-induced dyskinesias, improvement by an α2 antagonists, idaxozan, in patients with Parkinson’s disease. Mov Disord 12:111

    PubMed  Google Scholar 

  • Rascol O, Brooks DJ, Kroczyn AD, DeDeyn PP, Clarke CE, Lang AE (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinorole and levodopa. 056 Study Group. N Engl J Med 342:1484–1491

    Article  CAS  PubMed  Google Scholar 

  • Riblet LA, Taylor DP, Eison MS, Stanton HC (1982) Pharmacology and neurochemistry of buspirone. J Clin Psychiatry 34:11–16

    Google Scholar 

  • Romero JA, Chalmers JP, Cottman K, Lytle LD, Wurtman RJ (1972) Regional effects of l-dihydroxyphenylalanine (L-DOPA) on norepinephrine metabolism in rat brain. J Pharmacol Exp Ther 180:277–285

    CAS  PubMed  Google Scholar 

  • Sallinen J, Haapalinna A, Viitamaa T, Kobilka B, Scheinin M (1998) d-Amphetamine and l-5-hydroxytryptophan-induced behaviours in mice with genetically-altered expression of the alpha2C-adrenergic receptor subtype. Neuroscience 86:959–965

    PubMed  Google Scholar 

  • Savola J-M, Virtanen R (1991) Central α2-adrenoceptors highly stereoselective for dexmedetomidine, the dextro enantiomer of medetomidine. Eur J Pharmacol 195:193–199

    Article  CAS  PubMed  Google Scholar 

  • Scatton B, Zivkovic B, Dedek J (1980) Antidopaminergic properties of yohimbine. J Pharmacol Exp Ther 215:494–499

    CAS  PubMed  Google Scholar 

  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275:321–328

    CAS  PubMed  Google Scholar 

  • Schechter LE, Bolanos FJ, Gozlan H, Lanfumey L, Haj-Dahmane S, Laporte A-M, Fattccini C-M, Hamon M (1990) Alterations of central serotonergic and dopaminergic neurotransmission in rats chronically treated with ipsapirone: biochemical and electrophysiological studies. J Pharmacol Exp Ther 255:1335–1347

    CAS  PubMed  Google Scholar 

  • Singewald N, Philippu A (1996) Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends Pharmacol Sci 17:356–363

    CAS  PubMed  Google Scholar 

  • Trendelenburg A-U, Starke K, Limberger N (1994) Presynaptic alpha-2A-adrenoceptors inhibit the release of endogenous dopamine in rabbit caudate nucleus slices. Naunyn-Schmiedeberg’s Arch Pharmacol 350:473–481

    Google Scholar 

  • Turkka JT, Juujärvi KK, Myllylä VV (1987) Correlation of autonomic dysfunction to CSF concentrations of noradrenaline and 3-methoxy-4-hydroxyphenylglycol in Parkinson’s disease. Eur Neurol 26:29–34

    CAS  PubMed  Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493

    Google Scholar 

  • Van Oene JC, de Vries JB, Horn AS (1984) The effectiveness of yohimbine in blocking central dopamine autoreceptors in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 327:301–304

    Google Scholar 

  • Virtanen R, Savola J-M, Saano V, Nyman L (1988) Characterization of the selectivity, specificity and potency of medetomidine as an α2-adrenoceptor agonist. Eur J Pharmacol 150:9–14

    Article  CAS  PubMed  Google Scholar 

  • Yavich L, Lappalainen R, Sirviö J, Haapalinna A, MacDonald E (1997) α2-adrenergic control of dopamine overflow and metabolism in mouse striatum. Eur J Pharmacol 339:113–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. A. Alatupa for her experienced technical assistance and Ms. K. Svärd and Mr. M. Makkonen for design and preparing the rotometer apparatuses used in the tests. Dr. J Sirviö and Dr. E. MacDonald are acknowledged for professional discussions and for revising the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Haapalinna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haapalinna, A., Leino, T. & Heinonen, E. The α2-adrenoceptor antagonist atipamezole potentiates anti-Parkinsonian effects and can reduce the adverse cardiovascular effects of dopaminergic drugs in rats. Naunyn-Schmiedeberg's Arch Pharmacol 368, 342–351 (2003). https://doi.org/10.1007/s00210-003-0827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0827-z

Keywords

Navigation