Skip to main content
Log in

Pharmacological characterization of unique prazosin-binding sites in human kidney

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

In human kidney, we found unique prazosin-binding sites that were insensitive to phentolamine and were thus unlikely to be α1-adrenoceptors.

As the binding of [3H]prazosin to phentolamine-insensitive sites was prevented by 100 μM guanabenz, the insensitive sites were evaluated by subtracting [3H]prazosin binding in the presence of 100 μM guanabenz from that in the presence of 10 μM phentolamine. [3H]Prazosin bound to the phentolamine-insensitive sites monophasically with a high affinity (pKd; 9.1±0.08, n=8), and the Bmax value (814±204 fmol mg−1 protein, n=8) was more than ten times that of the phentolamine-sensitive α1-adrenoceptor (pKd=9.9±0.13, Bmax=66±23 fmol mg−1 protein, n=7). The phentolamine-insensitive sites in human kidney were highly sensitive to other quinazoline derivatives such as terazosin and doxazosin. However, other α1-adrenoceptor antagonists (tamsulosin, WB4101 and corynanthine) did not inhibit the binding at a range of concentrations that generally exhibit α1-adrenoceptor antagonism, and noradrenaline, rauwolscine and propranolol were without effect on the [3H]prazosin binding. On the other hand, ligands for the renal Na+-transporter (amiloride and triamterene) and for imidazoline recognition sites (guanabenz, guanfacine and agmatine) displaced the binding of [3H]prazosin to phentolamine-insensitive sites at micromolar concentrations. Photoaffinity labeling with [125I]iodoarylazidoprazosin showed phentolamine-insensitive labeling at around 100 kDa, a molecular size larger than that of human α1a- and α1b-adrenoceptors expressed in 293 cells (50–60 and 70–80 kDa, respectively) on electrophoresis. In contrast, there was no detectable phentolamine-insensitive binding site but were phentolamine-sensitive α1-adrenoceptors in human liver (pKd=10.0±0.06, Bmax=44±6 fmol mg–1 protein, n=3). Phentolamine-insensitive prazosin binding sites were also detected in rabbit kidney (approximately 50% of specific binding sites) but were minor in rat kidney (less than 20%).

In conclusion, there are unique prazosin-binding sites in human kidney, the pharmacological profiles of which were distinct from those of known adrenoceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Bagamery K, Kovacs L, Viski S, Nyari T, Falkay G (1999) Ontogeny of imidazoline binding sites in the human placenta. Acta Obstet Gynecol Scand 78:89–92

    Article  CAS  PubMed  Google Scholar 

  • Blue DR Jr, Bonhaus DW, Ford APDW, Pfister JR, Sharif NA, Shieh IA, Vimont RL, Williams TJ, Clarke DE (1995) Functional evidence equating the pharmacologically-defined α1A- and cloned α1C-adrenoceptor: studies in the isolated perfused kidney of rat. Br J Pharmacol 115:283–294

    CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg U (1994) IV International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    CAS  PubMed  Google Scholar 

  • Chen SLF, Brown CA, Scarpello KE, Morgan NG (1994) The imidazoline site involved in control of insulin secretion: characteristics that distinguish it from I1- and I2-sites. Br J Pharmacol 112:1065–1070

    PubMed  Google Scholar 

  • Clarke D, Garg LC (1991) Alpha-1 adrenergic receptors in renal medullary collecting duct cells. J Pharmacol Exp Ther 259:1081–1087

    CAS  PubMed  Google Scholar 

  • Coupry I, Podevin RA, Dausse JP, Parini A (1987) Evidence for imidazoline binding sites in basolateral membranes from rabbit kidney. Biochem Biophys Res Commun 147:1055–1060

    CAS  PubMed  Google Scholar 

  • Davey M (1987) Mechanism of alpha blockade for blood pressure control. Am J Cardiol 59:18G–28G

    CAS  PubMed  Google Scholar 

  • Docherty JR (1998) Subtypes of functional α1- and α2-adrenoceptors. Eur J Pharmacol 361:1–15

    CAS  PubMed  Google Scholar 

  • Flavahan NA, Vanhoutte PM (1986) α-Adrenoceptor subclassification in vascular smooth muscle. Trends Pharmacol Sci 7:347–349

    Article  CAS  Google Scholar 

  • Ford APDW, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD, Clarke DE (1997) Pharmacological pleiotropism of the human recombinant α-adrenoceptor: implications for α1-adrenoceptor classification. Br J Pharmacol 121:1127–1135

    CAS  PubMed  Google Scholar 

  • García-Sáinz JA, Romero-Avila MT, Tórres-Márquez ME (1995) Characterization of the human liver α1-adrenoceptors: predominance of the α1A-subtype. Eur J Pharmacol 289:81–86

    Article  PubMed  Google Scholar 

  • Graham RM, Perez DM, Hwa J, Piascik MT (1996) α1-Adrenergic receptor subtypes. Molecular structure, function and signaling. Circ Res 78:737–749

    CAS  PubMed  Google Scholar 

  • Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo RR Jr (1995) International Union of Pharmacology. X. Recommendation for nomenclature of α1-adrenoceptors: consensus update. Pharmacol Rev 47:267–270

    CAS  PubMed  Google Scholar 

  • Humphreys JE, Waite MA (1989) Alpha-1 blockers. A new generation of antihypertensive agents. J Clin Pharm Ther 14:263–283

    CAS  PubMed  Google Scholar 

  • Kenny B, Ballard S, Blagg J, Fox D (1997) Pharmacological options in the treatment of benign prostatic hyperplasia. J Med Chem 40:1293–1315

    Article  CAS  PubMed  Google Scholar 

  • Lachaud-Pettiti V, Podevin R-A, Chrétien Y, Parini A (1991) Imidazoline-guanidinium and α2-adrenergic binding sites in basolateral membranes from human kidney. Eur J Pharmacol 206:23–31

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lomasney JW, Cotecchia S, Lefkowitz RJ, Caron MG (1991) Molecular biology of alpha-adrenergic receptors: implications for receptor classification and for structure-function relationships. Biochim Biophys Acta 1095:127–139

    Article  CAS  PubMed  Google Scholar 

  • Macdonald E, Kobilka BK, Scheinin M (1997) Gene targeting—homing in on α2-adrenoceptor subtype function. Trends Pharmacol Sci 18:211–219

    CAS  PubMed  Google Scholar 

  • Mcgrath JC (1982) Evidence for more than one type of postjunctional alpha-adrenoceptor. Biochem Pharmacol 31:467–484

    Article  CAS  PubMed  Google Scholar 

  • Michel MC, Kenny B, Schwinn DA (1995) Classification of alpha-1 adrenoceptor subtypes. Naunyn-Schmiedebergs Arch Pharmacol 352:1–10

    Google Scholar 

  • Minamisawa K, Umemua S, Hirawa N, Hayashi S, Toya Y, Ishikawa Y, Yasuda G, Ishii M (1993) Characteristic localization of α1- and α2-adrenoceptors in the human kidney. Clin Exp Pharmacol Physiol 20:523–526

    CAS  PubMed  Google Scholar 

  • Mugisha P, Gründemann D, Schömig E, Uhlén S (2002) Binding of [3H]prazosin to α1A- and α1B-adrenoceptors, and to a cimetidine-sensitive non-α1 binding site in rat kidney membranes. Naunyn-Schmiedebergs Arch Pharmacol 365:335–340

    Google Scholar 

  • Muramatsu I, Ohmura T, Kigoshi S, Hashimoto S, Oshita M (1990) Pharmacological subclassification of α1-adrenoceptors in vascular smooth muscle. Br J Pharmacol 99:197–201

    CAS  PubMed  Google Scholar 

  • Muramatsu I, Taniguchi T, Okada K (1998) Tamsulosin: α1-adrenoceptor subtype-selectivity and comparison with terazosin. Jpn J Pharmacol 78:331–335

    CAS  PubMed  Google Scholar 

  • Nagarathnam D, Wetzel JM, Miao SW, Marzabadi MR, Chiu G, Wong WC, Hong X, Fang J, Forray C, Branchek TA, Heydorn WE, Chang RS, Broten T, Schorn TW, Gluchowski C (1998) Design and synthesis of novel alpha-1a adrenoceptor-selective dihydropyridine antagonists for the treatment of benign prostatic hyperplasia. J Med Chem 41:5320–5333

    Article  CAS  PubMed  Google Scholar 

  • Parini A, Moudanos CG, Pizzinat N, Lanier SM (1996) The elusive family of imidazoline binding sites. Trends Pharmacol Sci 17:13–16

    CAS  PubMed  Google Scholar 

  • Raddatz R, Lanier SM (1997) Relationship between imidazoline/guanidinium receptive sites and monoamine oxidase A and B. Neurochem Int 30:109–117

    CAS  PubMed  Google Scholar 

  • Raddatz R, Parini A, Lanier SM (1995) Imidazoline/guanidinium binding domains on monoamine oxidases. Relationship to subtypes of imidazoline-binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase B. J Biol Chem 270:27961–27968

    CAS  PubMed  Google Scholar 

  • Regunathan S, Reis DJ (1996) Imidazoline receptors and their endogenous ligands. Annu Rev Pharmacol Toxicol 36:511–544

    CAS  PubMed  Google Scholar 

  • Safa AR (1988) Photoaffinity labeling of the multidrug-resistance-related p-glycoprotein with photoactive analogs of verapamil. Proc Natl Acad Sci USA 85:7187–7191

    CAS  PubMed  Google Scholar 

  • Safa AR, Glover CJ, Swell JL, Meyers MB, Biedler JL, Felsted RL (1987) Identification of the multidrug resistance-related membrane glycoprotein as an acceptor for calcium channel blockers. J Biol Chem 262:7884–7888

    CAS  PubMed  Google Scholar 

  • Safa AR, Agresti M, Tamai I, Mehta ND, Vahabi S (1990) The α1-adrenergic photoaffinity probe [125I]arylazidoprazosin binds to a specific peptide of p-glycoprotein in multidrug-resistance cells. Biochem Biophys Res Commun 166:259–266

    CAS  PubMed  Google Scholar 

  • Schulz A, Hasselblatt A (1988) Phentolamine, a deceptive toll to investigate sympathetic nervous control of insulin release. Naunyn-Schmiedebergs Arch Pharmacol 337:637–643

    Google Scholar 

  • Schulz A, Hasselblatt A (1989) An insulin-releasing property of imidazoline derivatives is not limited to compounds that block α-adrenoceptors. Naunyn-Schmiedebergs Arch Pharmacol 340:321–327

    Google Scholar 

  • Sjöholm B, Lähdesmäki J, Pyykkö K, Hillilä M, Scheinin M (1999) Non-adrenergic binding of [3H]atipamezole in rat kidney-regional distribution and comparison to α2-adrenoceptors. Br J Pharmacol 128:1215–1222

    PubMed  Google Scholar 

  • Stephenson JA, Summers RJ (1986) Autoradiographic evidence for a heterogeneous distribution of α1-adrenoceptors labeled by [3H]prazosin in rat, dog and human kidney. J Auton Pharmacol 6:109–116

    CAS  PubMed  Google Scholar 

  • Takahashi M, Taniguchi T, Kanamaru H, Okada K, Muramatsu I (2000) Pharmacological characterization of [3H]-JTH-601, a novel α1-adrenoceptor antagonist: binding to recombinant human α1-adrenoceptors and human prostates. Life Sci 67:2443–2451

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Inagaki R, Murata S, Akiba I, Muramtsu I (1999) Microphysiometric analysis of human α1a-adrenoceptor expressed in Chinese hamster ovary cells. Br J Pharmacol 127:962–968

    CAS  PubMed  Google Scholar 

  • Terman BI, Insel PA (1986) Photoaffinity labeling of α1-adrenergic receptors of rat heart. J Biol Chem 261:5603–5609

    CAS  PubMed  Google Scholar 

  • Yang M, Verfürth F, Büscher R, Michel MC (1997) Is α1D-adrenoceptor protein detectable in rat tissues? Naunyn-Schmiedebergs Arch Pharmacol 355:438–446

    Google Scholar 

  • Zhang L, Taniguchi T, Tanaka T, Shinozuka K, Kunitomo M, Nishiyama M, Kamata K, Muramatsu I (2002) Alpha-1 adrenoceptor up-regulation induced by prazosin but not KMD-3213 or reserpine in rats. Br J Pharmacol 135:1757–1764

    CAS  PubMed  Google Scholar 

  • Zhong H, Minneman KP (1999) α1-Adrenoceptor subtypes. Eur J Pharmacol 375:261–276

    CAS  PubMed  Google Scholar 

  • Zusman RM (2000) The role of alpha 1-blockers in combination therapy for hypertension. Int J Clin Pract 54:36–40

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant from the Smoking Research Foundation of Japan and Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikunobu Muramatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiraoka, Y., Taniguchi, T., Tanaka, T. et al. Pharmacological characterization of unique prazosin-binding sites in human kidney. Naunyn-Schmiedeberg's Arch Pharmacol 368, 49–56 (2003). https://doi.org/10.1007/s00210-003-0764-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0764-x

Keywords

Navigation