Skip to main content
Log in

Maximum principles and qualitative properties of solutions for nonlocal double phase operator

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the following nonlocal double phase problems with a gradient term:

$$\begin{aligned} {\mathcal {L}}u(x)=f(x,u,\nabla u), \end{aligned}$$

where \({\mathcal {L}}\) is a nonlocal double phase operator. We first establish various maximum principles for nonlocal double phase operators in bounded or unbounded domains. Together these maximum principles with the direct method of moving planes and direct sliding methods, we further derive qualitative properties of solutions such as Liouville type theorem, monotonicity, symmetry and uniqueness results for solutions to the nonlocal double phase problems in bounded domains, unbounded domains, epigraph, and \({\mathbb {R}}^{n}\) respectively. We believe that the new ideas and methods employed here can be conveniently applied to study a variety of nonlinear elliptic problems involving other nonlocal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

All data generated or analysed during this study are included in this article.

References

  1. Ambrosio, V.: Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator. J. Math. Phys. 57(5), 051502 (2016)

  2. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)

    MathSciNet  Google Scholar 

  3. Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57, 62 (2018)

    MathSciNet  Google Scholar 

  4. Brandle, C., Colorado, E., de Pablo, A., Sanchez, U.: A concave–convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb.-A: Math. 143, 39–71 (2013)

    MathSciNet  Google Scholar 

  5. Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  6. Berestycki, H., Nirenberg, L.: Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations. J. Geom. Phys. 5, 237–275 (1988)

    MathSciNet  Google Scholar 

  7. Berestycki, H., Nirenberg, L.: Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains. In: Analysis, et Cetera. Academic Press, Boston, pp. 115–164 (1990)

  8. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bull. Braz. Math. Soc. (N.S.) 22, 1–37 (1991)

    MathSciNet  Google Scholar 

  9. Byun, S.-S., Oh, J.: Global gradient estimates for the borderline case of double phase problems with BMO coefficients in nonsmooth domains. J. Differ. Equ. 263(2), 1643–1693 (2017)

    MathSciNet  Google Scholar 

  10. Bahrouni, A., Rǎdulescu, V.D., Repovš, D.D.: Double-phase transonic flow problems with variable growth: nonlinear patterns and stationary waves. Nonlinearity 32, 2481–2495 (2019)

    MathSciNet  Google Scholar 

  11. Chen, W., Hu, Y.: Monotonicity of positive solutions for nonlocal problems in unbounded domains. J. Funct. Anal. 281(9), 109187, 32 (2021)

    MathSciNet  Google Scholar 

  12. Chen, Y., Liu, B.: Symmetry and non-existence of positive solutions for fractional p-Laplacian systems. Nonlinear Anal. 183, 303–322 (2019)

    MathSciNet  Google Scholar 

  13. Chen, W., Li, C., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308, 404–437 (2017)

    MathSciNet  Google Scholar 

  14. Chen, W., Li, Y., Ma, P.: The Fractional Laplacian. World Scientific (2019). https://doi.org/10.1142/10550

  15. Chen, W., Li, C.: Moving planes, moving spheres, and a priori estimates. J. Differ. Equ. 195(1), 1–13 (2003)

    MathSciNet  Google Scholar 

  16. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59, 330–343 (2006)

    MathSciNet  Google Scholar 

  17. Chen, W., Li, C.: Maximum principles for the fractional p-Laplacian and symmetry of solutions. Adv. Math. 335, 735–758 (2018)

    MathSciNet  Google Scholar 

  18. Chen, W., Li, Y., Zhang, R.: A direct method of moving spheres on fractional order equations. J. Funct. Anal. 272(10), 4131–4157 (2017)

    MathSciNet  Google Scholar 

  19. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443–496 (2015)

    MathSciNet  Google Scholar 

  20. Constantin, P.: Euler equations, Navier–Stokes equations and turbulence. In: Mathematical Foundation of Turbulent Viscous Flows, Vol. 1871 of Lecture Notes in Mathematics, pp. 1–43. Springer, Berlin (2006)

  21. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. PDEs 32, 1245–1260 (2007)

    MathSciNet  Google Scholar 

  22. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    MathSciNet  Google Scholar 

  23. Caffarelli, L., Vasseur, L.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Annals of Math. 171(3), 1903–1930 (2010)

    MathSciNet  Google Scholar 

  24. Chen, W., Wu, L.: The sliding methods for the fractional \(p\)-Laplacian. Adv. Math. 361, 106933, 26 (2020)

    MathSciNet  Google Scholar 

  25. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60, 67–112 (2007)

    MathSciNet  Google Scholar 

  26. Dai, W., Fang, Y., Qin, G.: Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes. J. Diff. Equ. 265, 2044–2063 (2018)

    MathSciNet  Google Scholar 

  27. Dai, W., Liu, Z., Qin, G.: Classification of nonnegative solutions to static Schrödinger–Hartree–Maxwell type equations. SIAM J. Math. Anal. 53(2), 1379–1410 (2021)

    MathSciNet  Google Scholar 

  28. Dai, W., Qin, G.: Liouville type theorems for fractional and higher order Hénon–Hardy equations via the method of scaling spheres. Int. Math. Res. Not. IMRN 11, 9001–9070 (2023)

    Google Scholar 

  29. Dai, W., Qin, G.: Classification of nonnegative classical solutions to third-order equations. Adv. Math. 328, 822–857 (2018)

    MathSciNet  Google Scholar 

  30. Dai, W., Qin, G.: Maximum principles and the method of moving planes for the uniformly elliptic nonlocal Bellman operator and applications. Ann. Mat. Pura Appl. (4) 200(3), 1085–1134 (2021)

    MathSciNet  Google Scholar 

  31. Dai, W., Qin, G., Wu, D.: Direct methods for pseudo-relativistic Schrödinger operators. J. Geom. Anal. 31(6), 5555–5618 (2021)

    MathSciNet  Google Scholar 

  32. Dipierro, S., Soave, N., Valdinoci, E.: On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results. Math. Ann. 369, 1283–1326 (2017)

    MathSciNet  Google Scholar 

  33. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of Radial Solutions for the Fractional Laplacian. Comm. Pure Appl. Math. 69(9), 1671–1726 (2013)

    MathSciNet  Google Scholar 

  34. De Filippis, C., Palatucci, G.: Hölder regularity for nonlocal double phase equations. J. Differ. Equ. 267(1), 547–586 (2020)

    Google Scholar 

  35. Guo, Y., Liu, J.: Liouville type theorems for positive solutions of elliptic system in \(R^{N}\). Commun. Partial Differ. Equ. 33, 263–284 (2008)

    Google Scholar 

  36. Guo, Y., Peng, S.: Symmetry and monotonicity of nonnegative solutions to pseudo-relativistic Choquard equations. Z. Angew. Math. Phys. 72(3), 120, 20 (2021)

    MathSciNet  Google Scholar 

  37. Guo, Y., Peng, S.: Classification of solutions to mixed order conformally invariant systems in \(R^{2}\). J. Geom. Anal. 32(6), 178, 41 (2022)

    Google Scholar 

  38. Liu, Z.: Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains. J. Differ. Equ. 270, 1043–1078 (2021)

    MathSciNet  Google Scholar 

  39. Li, Y.Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. 6, 153–180 (2004)

    MathSciNet  Google Scholar 

  40. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Rat. Mech. Anal. 195(2), 455–467 (2010)

    MathSciNet  Google Scholar 

  41. Peng, S.: Classification of solutions to mixed order elliptic system with general nonlinearity. SIAM J. Math. Anal. 55(4), 2774–2812 (2023)

    MathSciNet  Google Scholar 

  42. Peng, S.: Existence and Liouville theorems for coupled fractional elliptic system with Stein-Weiss type convolution parts. Math. Z. 302(3), 1593–1626 (2022)

    MathSciNet  Google Scholar 

  43. Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: elliptic systems. Duke Math. J. 139, 555–579 (2007)

    MathSciNet  Google Scholar 

  44. Pucci, P., Saldi, S.: Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractional p-Laplacian operator. J. Differ. Equ. 263(5), 2375–2418 (2017)

    MathSciNet  Google Scholar 

  45. Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: Double-phase problems with reaction of arbitrary growth. Z. Angew. Math. Phys. 69(4), 108 (2018)

    MathSciNet  Google Scholar 

  46. Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: Double-phase problems and a discontinuity property of the spectrum. Proc. Am. Math. Soc. 147, 2899–2910 (2019)

    MathSciNet  Google Scholar 

  47. Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in \({\mathbb{R} }^{N}\). Calc. Var. Partial. Differ. Equ. 54, 2785–2806 (2015)

    Google Scholar 

  48. Serrin, J.: A symmetry problem in potential theory. Arch. Rat. Mech. Anal. 43, 304–318 (1971)

    MathSciNet  Google Scholar 

  49. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

    MathSciNet  Google Scholar 

  50. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3(2), 249–269 (1995)

    MathSciNet  Google Scholar 

  51. Zhang, Q., Rǎdulescu, V.D.: Double-phase anisotropic variational problems and combined effects of reaction and absorption terms. J. Math. Pures Appl. (9) 118, 159–203 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their careful reading and valuable comments and suggestions that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolong Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shaolong Peng is supported by the National Natural Science Foundation of China (No. 11971049).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Peng, S. Maximum principles and qualitative properties of solutions for nonlocal double phase operator. Math. Z. 306, 9 (2024). https://doi.org/10.1007/s00209-023-03405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03405-4

Keywords

Mathematics Subject Classification

Navigation