Skip to main content
Log in

Classification and qualitative analysis of positive solutions of the nonlinear Hartree type system

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we focus on the qualitative analysis of positive solutions for a specific class of static coupled nonlinear Hartree type systems. In the initial step, we convert these equations into integral systems that incorporate the Riesz potentials. Following that, we acquire integrability outcomes and decay characteristics for the integrable solutions of these integral systems, employing the regularity lifting lemma as our second approach. Lastly, as a third step, we establish Liouville-type results and conduct a comprehensive classification of positive solutions for the integral systems in \({\mathbb {R}}^{N}\) using the moving plane method. To the best of our knowledge, this kind of Liouville type result is sharp and new even for Choquard equation. As an application, we deduce the sharp and new Liouville type results for the elliptic system with quadratic nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abe, S., Ogura, A.: Solitary waves and their critical behavior in a nonlinear nonlocal medium with power-law response. Phys. Rev. E 57, 6066–6070 (1998)

    Google Scholar 

  2. Ai, S.-B.: Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differ. Equ. 232, 104–133 (2007)

    MathSciNet  Google Scholar 

  3. Berestycki, H., Nadin, D., Perthame, B., Ryzhik, L.: The nonlocal Fisher-KPP equation: travelling waves and steady states. Nonlinearity 22, 2813–2844 (2009)

    MathSciNet  Google Scholar 

  4. Buryak, A.-V., Di Trapani, P., Skryabin, D.-V., Trillo, S.: Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370, 63–235 (2002)

    MathSciNet  Google Scholar 

  5. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    MathSciNet  Google Scholar 

  6. Cassani, D., Van Schaftingen, J., Zhang, J.-J.: Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent. Proc. R. Soc. Edinb. Sect. A 150(2020), 1377–1400 (2020)

    MathSciNet  Google Scholar 

  7. Chang, S.-A., Yang, P.-C.: On uniqueness of solutions of n-th order differential equations in conformal geometry. Math. Res. Lett. 4, 91–102 (1997)

    MathSciNet  Google Scholar 

  8. Chen, W.-X., Li, C.-M.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    MathSciNet  Google Scholar 

  9. Chen, W.-X., Li, C.-M.: Methods on nonlinear elliptic equations. AIMS Series on Differential Equations Dynamical Systems, American Institute of Mathematical Sciences (AIMS), vol. 4. Springfield, MO (2010)

  10. Chen, W.-X., Li, C.-M., Ou, B.: Classification of solutions for a system of integral equations. Commun. Partial Differ. Equ. 30, 59–65 (2005)

    MathSciNet  Google Scholar 

  11. Chen, W.-X., Li, C.-M., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    MathSciNet  Google Scholar 

  12. Chen, W.-X., Fang, Y., Yang, R.: Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274, 167–198 (2015)

    MathSciNet  Google Scholar 

  13. Chen, W.-X., Li, C.-M., Li, Y.: A direct blowing-up and rescaling argument on nonlocal elliptic equations. Int. J. Math. 27, 1650064 (2016)

    MathSciNet  Google Scholar 

  14. Chen, W.-X., Li, Y., Zhang, R.: A direct method of moving spheres on fractional order equations. J. Funct. Anal. 272, 4131–4157 (2017)

    MathSciNet  Google Scholar 

  15. Chen, W.-X., Li, C.-M., Zhu, J.-Y.: Fractional equations with indefinite nonlinearities. Discrete Contin. Dyn. Syst. 39, 1257–1268 (2019)

    MathSciNet  Google Scholar 

  16. Dai, W., Qin, G.-L.: Classification of nonnegative classical solutions to third-order equations. Adv. Math. 328, 822–857 (2018)

    MathSciNet  Google Scholar 

  17. Dai, W., Huang, J.-H., Qin, Y., Wang, B., Fang, Y.-Q.: Regularity and classification of solutions to static Hartree equations involving fractional Laplacians. Discrete Contin. Dyn. Syst. 39, 1389–1403 (2019)

    MathSciNet  Google Scholar 

  18. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Google Scholar 

  19. Fröhlich, J., Tsai, T.-P., Yau, H.-T.: On a classical limit of quantum theory and the nonlinear Hartree equation, Geom. Funct. Anal., (Special Volume, Part I). GAFA 2000 (Tel Aviv, 1999), pp. 57–78 (2000)

  20. Fröhlich, J., Tsai, T.-P., Yau, H.-T.: On the point-particle (Newtonian) limit of the nonlinear Hartree equation. Commun. Math. Phys. 225, 223–274 (2002)

    Google Scholar 

  21. Furter, J., Grinfeld, M.: Local vs. nonlocal interactions in population dynamics. J. Math. Biol. 27, 65–80 (1989)

    MathSciNet  Google Scholar 

  22. Geng, Q.-P., Dong, Y.-Y., Wang, J.: Existence and multiplicity of nontrivial solutions of weakly coupled nonlinear Hartree type elliptic system. Z. Angew. Math. Phys. 73(2), 25 (2022)

    MathSciNet  Google Scholar 

  23. Georgiev, V., Venkov, G.: Symmetry and uniqueness of minimizers of Hartree type equations with external Coulomb potential. J. Differ. Equ. 251, 420–438 (2011)

    MathSciNet  Google Scholar 

  24. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    MathSciNet  Google Scholar 

  25. Gidas, B., Ni, W., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^{n}\). In: Mathematical Analysis and Applications, Advances in Mathematics, vol. 7a. Academic Press, New York (1981)

  26. Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems I. Commun. Math. Phys. 66, 37–76 (1979)

    MathSciNet  Google Scholar 

  27. Gourley, S.A.: Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41, 272–284 (2000)

    MathSciNet  Google Scholar 

  28. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    MathSciNet  Google Scholar 

  29. Jin, C., Li, C.-M.: Quantitative analysis of some system of integral equations. Calc. Var. Partial Differ. Equ. 26, 447–457 (2006)

    MathSciNet  Google Scholar 

  30. Krolikowski, W., Bang, O., Nikolov, N.I., Neshev, D., Wyller, J., Rasmussen, J.J., Edmundson, D.: Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media. J. Opt. B Quant. Semiclass. Opt. 6, S288–S294 (2004)

    Google Scholar 

  31. Le Bris, C., Lions, P.-L.: From atoms to crystals: a mathematical journey. Bull. Am. Math. Soc. (N.S.) 42, 291–363 (2005)

    MathSciNet  Google Scholar 

  32. Lei, Y.-T.: Qualitative analysis for the static Hartree-type equations. SIAM J. Math. Anal. 45, 388–406 (2013)

    MathSciNet  Google Scholar 

  33. Lei, Y.-T.: On the regularity of positive solutions of a class of Choquard type equations. Math. Z. 273, 883–905 (2013)

    MathSciNet  Google Scholar 

  34. Lenzmann, E.: Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2, 1–27 (2009)

    MathSciNet  Google Scholar 

  35. Li, C.-M., Ma, L.: Uniqueness of positive bound states to Schrödinger systems with critical exponents. SIAM J. Math. Anal. 40, 1049–1057 (2008)

    MathSciNet  Google Scholar 

  36. Lieb, E.-H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/77)

  37. Lieb, E.-H., Loss, M.: Analysis, Volume 14 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  38. Lieb, E.-H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    MathSciNet  Google Scholar 

  39. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    MathSciNet  Google Scholar 

  40. Lions, P.-L.: Some remarks on Hartree equation. Nonlinear Anal. 5, 1245–1256 (1981)

    MathSciNet  Google Scholar 

  41. Lions, P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)

    MathSciNet  Google Scholar 

  42. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    MathSciNet  Google Scholar 

  43. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    MathSciNet  Google Scholar 

  44. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    MathSciNet  Google Scholar 

  45. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent. Commun. Contemp. Math. 17(5), 1550005 (2015)

    MathSciNet  Google Scholar 

  46. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    MathSciNet  Google Scholar 

  47. Ninomiya, H., Tanaka, Y., Yamamoto, H.: Reaction, diffusion and nonlocal interaction. J. Math. Biol. 75, 1203–1233 (2017)

    MathSciNet  Google Scholar 

  48. Ninomiya, H., Tanaka, Y., Yamamoto, H.: Reaction-diffusion approximation of nonlocal interactions using Jacobi polynomials. Jpn. J. Ind. Appl. Math. 35, 613–651 (2018)

    MathSciNet  Google Scholar 

  49. Pedri, P., Santos, L.: Two-dimensional bright solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 95, 200404 (2005)

    Google Scholar 

  50. Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems I. Elliptic equations and systems. Duke Math. J. 139, 555–579 (2007)

    MathSciNet  Google Scholar 

  51. Quittner, P., Souplet, P.: Optimal Liouville-type Theorems for Noncooperative Elliptic Schrödinger Systems and Applications. Commun. Math. Phys. 311, 1–19 (2012)

    Google Scholar 

  52. Reichel, W., Zou, H.-H.: Non-existence results for semilinear cooperative elliptic systems via moving spheres. J. Differ. Equ. 161, 219–243 (2000)

    MathSciNet  Google Scholar 

  53. Ruiz, D., Van Schaftingen, J.: Odd symmetry of least energy nodal solutions for the Choquard equation. J. Differ. Equ. 264, 1231–1262 (2018)

    MathSciNet  Google Scholar 

  54. Santos, L., Shlyapnikov, G.V., Zoller, P., Lewenstein, M.: Bose–Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85, 1791–1794 (2000)

    Google Scholar 

  55. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971)

    MathSciNet  Google Scholar 

  56. Serrin, J., Zou, H.-H.: Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math. 189, 79–142 (2002)

    MathSciNet  Google Scholar 

  57. Tanaka, Y., Yamamoto, H., Ninomiya, H.: Mathematical approach to nonlocal interactions using a reaction-diffusion system. Dev. Growth Differ. 59, 388–395 (2017)

    Google Scholar 

  58. Wang, J.: Solitary waves for coupled nonlinear elliptic system with nonhomogeneous nonlinearities. Calc. Var. Partial Differ. Equ. 56(2), 38 (2017)

    MathSciNet  Google Scholar 

  59. Wang, J.: Existence of normalized solutions for the coupled Hartree–Fock type system. Math. Nachr. 294(10), 1987–2020 (2021)

    MathSciNet  Google Scholar 

  60. Wang, J.: Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction. Adv. Nonlinear Anal. 11, 385–416 (2022)

    MathSciNet  Google Scholar 

  61. Wang, P.-Y., Niu, P.-C.: Liouville’s theorem for a fractional elliptic system. Discrete Contin. Dyn. Syst. 39, 1545–1558 (2019)

    MathSciNet  Google Scholar 

  62. Wang, J., Shi, J.-P.: Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction. Calc. Var. Partial Differ. Equ. 56, 168 (2017)

    MathSciNet  Google Scholar 

  63. Wang, J., Yang, W.: Normalized solutions and asymptotical behavior of minimizer for the coupled Hartree equations. J. Differ. Equ. 265, 501–544 (2018)

    MathSciNet  Google Scholar 

  64. Yang, M.-B., Wei, Y.-H., Ding, Y.-H.: Existence of semiclassical states for a coupled Schrödinger system with potentials and nonlocal nonlinearities. Z. Angew. Math. Phys. 65, 41–68 (2014)

    MathSciNet  Google Scholar 

  65. Yew, A.-C.: Multipulses of nonlinearly coupled Schrödinger equations. J. Differ. Equ. 173, 92–137 (2001)

    MathSciNet  Google Scholar 

  66. Yew, A.-C., Champneys, A.-R., McKenna, P.-J.: Multiple solitary waves due to second-harmonic generation in quadratic media. J. Nonlinear Sci. 9, 33–52 (1999)

    MathSciNet  Google Scholar 

  67. Zhao, L.-G., Zhao, F.-K., Shi, J.-P.: Higher dimensional solitary waves generated by second-harmonic generation in quadratic media. Calc. Var. Partial Differ. Equ. 54, 2657–2691 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author expresses gratitude to the anonymous referees for their valuable comments and nice suggestions to improve the results. This work was supported by National Key R &D Program of China (2022YFA1005601), NNSF of China (nos. 12371114, 11971202) and Outstanding Young foundation of Jiangsu Province (Grant BK20200042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. Classification and qualitative analysis of positive solutions of the nonlinear Hartree type system. Math. Z. 306, 5 (2024). https://doi.org/10.1007/s00209-023-03403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03403-6

Keywords

Mathematics Subject Classification

Navigation