Skip to main content
Log in

Nonsplit conics in the reduction of an arithmetic curve

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For a function field in one variable F/K and a discrete valuation v of K with perfect residue field k, we bound the number of discrete valuations on F extending v whose residue fields are non-ruled function fields in one variable over k. Assuming that K is relatively algebraically closed in F, we find that the number of non-ruled residually transcendental extensions of v to F is bounded by \({\mathfrak {g}}+1\) where \({\mathfrak {g}}\) is the genus of F/K. An application to sums of squares in function fields of curves over \({\mathbb {R}}(\!(t)\!)\) is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becher, K.J., Grimm, D., Van Geel, J.: Sums of squares in algebraic function fields over a complete discretely valued field. Pac. J. 267, 257–276 (2014)

    MathSciNet  Google Scholar 

  2. Becher, K.J., Gupta, P.: A ruled residue theorem for function fields of conics. J. Pure Appl. Algebra 225, 106638 (2021)

    Article  MathSciNet  Google Scholar 

  3. Becher, K.J., Gupta, P., Chandra Mishra, S.: A ruled residue theorem for function fields of elliptic curves. J. Pure Appl. Algebra (2023). https://doi.org/10.1016/j.jpaa.2023.107492

    Article  Google Scholar 

  4. Becher, K.J., Van Geel, J.: Sums of squares in function fields of hyperelliptic curves. Math. Z. 261, 829–844 (2009)

    Article  MathSciNet  Google Scholar 

  5. Becker, E.: Hereditarily-Pythagorean fields and orderings of higher level. Monogr. Math. 29, 1 (1978)

    MathSciNet  Google Scholar 

  6. Deuring, M.: Lectures on the Theory of Algebraic Functions of One Variable. Lecture Notes in Mathematics, vol. 314. Springer, Berlin (1973)

    Book  Google Scholar 

  7. Dutta, A.: A ruled residue theorem for algebraic function fields of curves of prime degree. J. Pure Appl. Algebra 227, 107453 (2023)

    Article  MathSciNet  Google Scholar 

  8. Elman, R., Karpenko, N., Merkurjev, A.: The Algebraic and Geometric Theory of Quadratic Forms. AMS Colloquium Publ., vol. 56. Amer. Math. Soc., Providence (2008)

    Google Scholar 

  9. Green, B., Matignon, M., Pop, F.: On valued function fields, I. Manuscr. Math. 65, 357–376 (1989)

    Article  MathSciNet  Google Scholar 

  10. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford (2002)

    Book  Google Scholar 

  11. Manzano-Flores, G.: Sums of squares in function fields over Henselian discretely valued fields. Preprint (2023). arXiv:2203.14357

  12. Mathieu, H.: Das Verhalten des Geschlechts bei Konstantenreduktionen algebraischer Funktionenkörper. Arch. Math. (Basel) 20, 597–611 (1969)

    Article  MathSciNet  Google Scholar 

  13. Matignon, M.: Genre et genre résiduel des corps de fonctions valués. Manuscri. Math. 58, 179–214 (1987)

    Article  Google Scholar 

  14. Mumford, D., Oda, T.: Algebraic Geometry II, Hindustan Book Agency Series, Volume 73 of Texts and Readings in Mathematics. Hindustan Book Agency, New York (2015)

    Google Scholar 

  15. Nagata, M.: A theorem on valuation rings and its applications. Nagoya Math. J. 29, 85–91 (1967)

    Article  MathSciNet  Google Scholar 

  16. Ohm, J.: The ruled residue theorem for simple transcendental extensions of valued fields. Proc. Am. Math. Soc. 89, 16–18 (1983)

    Article  MathSciNet  Google Scholar 

  17. Tikhonov, S.V., Van Geel, J., Yanchevskiĭ, V.I.: Pythagoras numbers of function fields of hyperelliptic curves with good reduction. Manuscr. Math. 119, 305–322 (2006)

    Article  MathSciNet  Google Scholar 

  18. Stacks Project. http://stacks.math.columbia.edu

  19. Stichtenoth, H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254, 2nd edn. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Grimm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the FWO Odysseus Programme (Project G0E6114N, Explicit Methods in Quadratic Form Theory), funded by the Fonds Wetenschappelijk Onderzoek—Vlaanderen, by ANID (proyecto FONDECYT 11150956) and by the Universidad de Santiago de Chile (USACH proyecto DICYT, Codigo 041933 G).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becher, K.J., Grimm, D. Nonsplit conics in the reduction of an arithmetic curve. Math. Z. 306, 12 (2024). https://doi.org/10.1007/s00209-023-03395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03395-3

Keywords

Mathematics Subject Classification

Navigation