Skip to main content
Log in

Asymptotic spectral flow

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we study the asymptotic behavior of the spectral flow of a one-parameter family \(\{D_s\}\) of Dirac operators acting on the spinor bundle S twisted by a vector bundle E of rank k, with the parameter \(s\in [0,r]\) when r gets sufficiently large. Our method uses the variation of eta invariant and local index theory technique. The key is a uniform estimate of the eta invariant \(\bar{\eta }(D_r)\) which is established via local index theory technique and heat kernel estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Philos. Soc. 77(1), 43–69 (1975)

  2. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and riemannian geometry. II. Math. Proc. Camb. Philos. Soc. 78(3), 405–432 (1975)

  3. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. III. Math. Proc. Camb. Philos. Soc. 79(1), 71–99 (1976)

  4. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer Science & Business Media, New York (2003)

    MATH  Google Scholar 

  5. Bismut, J.-M., Freed, D.S.: The analysis of elliptic families: II. Dirac operators, eta invariants, and the holonomy theorem. Commun. Math. Phys. 107, 103–163 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bismut, J.-M., Lebeau, G.: Complex immersions and quillen metrics. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 74(1), 1–291 (1991)

    Article  MATH  Google Scholar 

  7. Booss, B., Booß-Bavnbek, B., Wojciechhowski, K.P., Wojciechowski, K.: Elliptic Boundary Problems for Dirac Operators, vol. 4. Springer Science & Business Media, New York (1993)

    Book  MATH  Google Scholar 

  8. Cheeger, J.: \(\eta \)-invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation. J. Differ. Geom. 26(1), 175–221 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete riemannian manifolds. J. Differ. Geom. 17(1), 15–53 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12(4), 401–414 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai, X., Liu, K., Ma, X.: On the asymptotic expansion of Bergman kernel. J. Differ. Geom. 72(1), 1–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dai, X., Zhang, W.: Higher spectral flow. J. Funct. Anal. 157(2), 432–469 (1998)

  13. Getzler, E.: A short proof of the local Atiyah–Singer index theorem. Topology 25(1), 111–117 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Getzler, E.: The odd Chern character in cyclic homology and spectral flow. Topology 32(3), 489–507 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lawson, H., Michelsohn, M.: Spin Geometry. Princeton Mathematical Series. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  16. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  17. Roe, J.: An index theorem on open manifolds. I. J. Differ. Geom. 27(1), 87–113 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Savale, N.: Asymptotics of the eta invariant. Commun. Math. Phys. 332(2), 847–884 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Savale, N.: A Gutzwiller type trace formula for the magnetic Dirac operator. Geom. Funct. Anal. 28(5), 1420–1486 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Taubes, C.H.: Asymptotic spectral flow for Dirac operators. Commun. Anal. Geom. 15(3), 569–587 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taubes, C.H.: The Seiberg–Witten equations and the Weinstein conjecture. Geom. Topol. 11(4), 2117–2202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for careful reading and valuable suggestions. The second author would like to thank professor Weiping Zhang and Huitao Feng for their constant encouragement and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xianzhe Dai was partially supported by the Simons Foundation. Yihan Li was partially supported by Nankai Zhide Foundation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Li, Y. Asymptotic spectral flow. Math. Z. 303, 78 (2023). https://doi.org/10.1007/s00209-023-03229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03229-2

Navigation