Skip to main content
Log in

Two weight Sobolev norm inequalities for smooth Calderón–Zygmund operators and doubling weights

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

A Correction to this article was published on 21 May 2024

This article has been updated

Abstract

Let \(\mu \) be a positive locally finite Borel measure on \({\mathbb {R}}^{n}\) that is doubling, and define the homogeneous \(W^{s}\left( \mu \right) \)-Sobolev norm squared \(\left\| f\right\| _{W^{s}\left( \mu \right) }^{2}\) of a function \(f\in L_{{\textrm{loc}}}^{2}\left( \mu \right) \) by

$$\begin{aligned} \int _{{\mathbb {R}}^{n}}\int _{{\mathbb {R}}^{n}}\left( \frac{f\left( x\right) -f\left( y\right) }{\left| x-y\right| ^{s}}\right) ^{2}\frac{d\mu \left( x\right) d\mu \left( y\right) }{\left| B\left( \frac{x+y}{2}, \frac{\left| x-y\right| }{2}\right) \right| _{\mu }}, \end{aligned}$$

and denote by \(W^{s}\left( \mu \right) \) the corresponding Hilbert space completion (when \(\mu \) is Lebesgue measure, this is the familiar Sobolev space on \({\mathbb {R}}^{n}\)). We prove in particular that for \(0\le \alpha <n\), and \(\sigma \) and \(\omega \) doubling measures on \({\mathbb {R}}^{n}\), there is a positive constant \( \theta \) such for \(0<s<\theta \), any smooth \(\alpha \)-fractional convolution singular integral \(T^{\alpha }\) with homogeneous kernel that is nonvanishing in some coordinate direction, is bounded from \(W^{s}\left( \sigma \right) \) to \(W^{s}\left( \omega \right) \) if and only if the classical fractional Muckenhoupt condition on the measure pair holds,

$$\begin{aligned} A_{2}^{\alpha }\equiv \sup _{Q\in {\mathcal {Q}}^{n}}\frac{\left| Q\right| _{\omega }\left| Q\right| _{\sigma }}{\left| Q\right| ^{2\left( 1-\frac{\alpha }{n}\right) }}<\infty , \end{aligned}$$

as well as the Sobolev \({\textbf{1}}\)-testing and \({\textbf{1}}^{*}\)-testing conditions for the operator \(T^{\alpha }\),

$$\begin{aligned} \left\| T_{\sigma }^{\alpha }{\textbf{1}}_{I}\right\| _{W^{s}\left( \omega \right) }\le & {} {\mathfrak {T}}_{T^{\alpha }}\left( \sigma ,\omega \right) \sqrt{\left| I\right| _{\sigma }}\ell \left( I\right) ^{-s},\quad I\in {\mathcal {Q}}^{n}, \\ \left\| T_{\omega }^{\alpha ,*}{\textbf{1}}_{I}\right\| _{W^{s}\left( \sigma \right) ^{*}}\le & {} {\mathfrak {T}}_{T^{\alpha ,*}}\left( \omega ,\sigma \right) \sqrt{\left| I\right| _{\omega }} \ell \left( I\right) ^{s},\quad I\in {\mathcal {Q}}^{n}, \end{aligned}$$

taken over the family of indicator test functions \(\left\{ {\textbf{1}} _{I}\right\} _{I\in {\mathcal {P}}^{n}}\). Here \({\mathcal {Q}}^{n}\) is the collection of all cubes with sides parallel to the coordinate axes, and \( W^{s}\left( \mu \right) ^{*}\) denotes the dual of \(W^{s}\left( \mu \right) \) determined by the usual \(L^{2}\left( \mu \right) \) bilinear pairing, which we identify with a dyadic Sobolev space \(W_{{\textrm{dyad}} }^{-s}\left( \mu \right) \) of negative order. The sufficiency assertion persists for more general singular integral operators \(T^{\alpha }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Notes

  1. Weighted Sobolev spaces are not canonically defined for general weights, and doubling is a convenient hypothesis that gives equivalence of the various definitions.

  2. For general measures, the functional \(\left\| {}\right\| _{W_{\mathcal { D};\kappa }^{s}\left( \mu \right) }\) may only be a seminorm, but this is avoided for doubling measures.

  3. Moreover, even taking into account the behaviour at infinity, one can show that \(\left\| f\right\| _{W_{{\mathcal {D}};1}^{s}\left( \mu \right) }=0\) when \({\mathcal {D}}\) is the standard grid and \(s>0\).

  4. For example, if \(d\mu =dx\) and \(f=\sum _{k=1}^{2N}\left( -1\right) ^{k}1_{ \left[ k-1,k\right) }\), then \(\left\| f\right\| _{W_{{\textrm{dyad}} }^{-s}}^{2}\approx N\), while \(\left\| \left| f\right| \right\| _{W_{{\textrm{dyad}}}^{-s}}^{2}\approx N^{1+2\,s}\).

References

  1. Alexis, M., Sawyer, E.T., Uriarte-Tuero, I.: A \(T1\) theorem for general Calderón–Zygmund operators with doubling weights, and optimal cancellation conditions, II. arXiv:2111.06277

  2. Alexis, M., Sawyer, E.T., Uriarte-Tuero, I.: Tops of dyadic grids. arXiv:2201.02897

  3. Di Plinio, F., Wick, B.D., Williams, T.: Wavelet representation of singular integral operators. Math. Ann. arXiv:2009.01212(to appear)

  4. Duong, X.T., Li, J., Sawyer, E.T., Vempati, N.M., Wick, B.D., Yang, D.: A two weight inequality for Calderón-Zygmund operators on spaces of homogeneous type with applications. J. Funct. Anal. 281(9), Paper No. 109190, pp. 65 (2021)

  5. Han, Y.S., Sawyer, E.T.: Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces. Mem. Amer. Math. Soc. 110(530), pp. vi\(+\)126 (1994)

  6. Hytönen, T.: The two weight inequality for the Hilbert transform with general measures. arXiv:1312.0843v2

  7. Kareima, A., Li, J., Pereyra, C., Ward, L.: Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on product spaces of homogeneous type. arXiv:1509.03761

  8. Lacey, M.T.: Two weight inequality for the Hilbert transform: a real variable characterization, II. Duke Math. J. 163(15), 2821–2840 (2014)

    MathSciNet  Google Scholar 

  9. Lacey, M.T., Sawyer, E.T., Shen, C.-Y., Uriarte-Tuero, I.: Two weight inequality for the Hilbert transform: a real variable characterization I. Duke Math. J. 163(15), 2795–2820 (2014)

    MathSciNet  Google Scholar 

  10. Lacey, M.T., Sawyer, E.T., Shen, C.-Y., Uriarte-Tuero, I., Wick, B.D.: Two weight inequalities for the Cauchy transform from \({\mathbb{R}}\) to \({\mathbb{C}}_{+}\). arXiv:1310.4820v4

  11. Lacey, M.T., Wick, B.D.: Two weight inequalities for Riesz transforms: uniformly full dimension weights. arXiv:1312.6163v1(v2,v3)

  12. Nazarov, F., Treil, S., Volberg, A.: Two weight estimate for the Hilbert transform and corona decomposition for non-doubling measures. Preprint (2004). arxiv:1003.1596

  13. Peetre, J.: New Thoughts on Besov Spaces. Mathematics Department, Duke University, Durham (1976)

    Google Scholar 

  14. Rahm, R., Sawyer, E.T., Wick, B.D.: Weighted Alpert wavelets. J. Fourier Anal. Appl. (IF1.273), Pub Date : 2020-11-23. https://doi.org/10.1007/s00041-020-09784-0.arXiv:1808.01223v2

  15. Sawyer, E.T., Uriarte-Tuero, I.: Control of the bilinear indicator cube testing property. arXiv:1910.09869

  16. Sawyer, E.: A \(T1\) theorem for general Calderón–Zygmund operators with comparable doubling weights and optimal cancellation conditions. arXiv:1906.05602v10. Journal d’Analyse (to appear)

  17. Sawyer, E.T., Shen, C.-Y., Uriarte-Tuero, I.: A two weight theorem for \(\alpha \) -fractional singular integrals with an energy side condition. Revista Mat. Iberoam. 32(1), 79–174 (2016)

    Article  MathSciNet  Google Scholar 

  18. Sawyer, E.T., Shen, C.-Y., Uriarte-Tuero, I.o: A two weight fractional singular integral theorem with side conditions, energy and \(k\) -energy dispersed. In: Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 2) (Celebrating Cora Sadosky’s life). Springer (2017). (see also arXiv:1603.04332v2)

  19. Sawyer, E.T., Shen, C.-Y., Uriarte-Tuero, I.: A two weight local Tb theorem for the Hilbert transform. Rev. Mat. Iberoam. 37(2), 415–641 (2021)

    Article  MathSciNet  Google Scholar 

  20. Seeger, A., Ullrich, T.: Haar projection numbers and failure of unconditional convergence in Sobolev spaces. Math. Z. 285, 91–119 (2017)

    Article  MathSciNet  Google Scholar 

  21. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    Google Scholar 

  22. Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    Google Scholar 

  23. Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhauser, Basel (1983)

    Book  Google Scholar 

  24. Volberg, A.: Calderón-Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conference Series in Mathematics, 100. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, iv\(+\)167 pp. ISBN: 0-8218-3252-2 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett D. Wick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Eric T. Sawyer research supported in part by a grant from the National Science and Engineering Research Council of Canada. Brett D. Wick’s research is supported in part by National Science Foundation Grants DMS # 1800057, # 2054863, and # 2000510 and Australian Research Council—DP 220100285.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawyer, E.T., Wick, B.D. Two weight Sobolev norm inequalities for smooth Calderón–Zygmund operators and doubling weights. Math. Z. 303, 81 (2023). https://doi.org/10.1007/s00209-023-03220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03220-x

Navigation