Skip to main content
Log in

The minimal model program for b-log canonical divisors and applications

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We discuss the minimal model program for b-log varieties, which is a pair of a variety and a b-divisor, as a natural generalization of the minimal model program for ordinary log varieties. We show that the main theorems of the log MMP work in the setting of the b-log MMP. If we assume that the log MMP terminates, then so does the b-log MMP. Furthermore, the b-log MMP includes both the log MMP and the equivariant MMP as special cases. There are various interesting b-log varieties arising from different objects, including the Brauer pairs, or “non-commutative algebraic varieties which are finite over their centres.” The case of toric Brauer pairs is discussed in further detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramovich, D., Graber, T., Vistoli, A.: Gromov–Witten theory of Deligne–Mumford stacks. Am. J. Math. 130(5), 1337–1398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin, M., de Jong, A.J.: Stable orders over surfaces. http://www.math.lsa.umich.edu/courses/711/ordersms-num.pdf

  3. Artin, M., Mumford, D.: Some elementary examples of unirational varieties which are not rational. Proc. Lond. Math. Soc. 3(25), 75–95 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auslander, M., Goldman, O.: Maximal orders. Trans. Am. Math. Soc. 97, 1–24 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birkar, C.: Existence of log canonical flips and a special LMMP. Publ. Math. Inst. Hautes Études Sci. 115, 325–368 (2012)

  6. Birkar, C.: Generalised pairs in birational geometry. EMS Surv. Math. Sci. 8(1–2), 5–24 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, D., Ingalls, C.: The minimal model program for orders over surfaces. Invent. Math. 161(2), 427–452 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, D., Kulkarni, R.S.: del Pezzo orders on projective surfaces. Adv. Math. 173(1), 144–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corti, A.: 3-fold flips after Shokurov. In: Flips for 3-folds and 4-folds, Volume 35 of Oxford Lecture Ser. Math. Appl., pp. 18–48. Oxford University Press, Oxford (2007)

  11. Corti, A. (ed.): Flips for 3-folds and 4-folds. Oxford Lecture Series in Mathematics and Its Applications, vol. 35. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  12. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

    Google Scholar 

  13. DeMeyer, F.R., Ford, T.J.: On the Brauer group of toric varieties. Trans. Am. Math. Soc. 335(2), 559–577 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fujino, O.: Fundamental theorems for semi log canonical pairs. Algebraic Geom. 1(2), 194–228 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fujino, O., Gongyo, Y.: Log pluricanonical representations and the abundance conjecture. Compos. Math. 150(4), 593–620 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fulton, W.: Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2nd edition. Springer, Berlin (1998)

  17. Grieve, N., Ingalls, C.: On the Kodaira dimension of maximal orders. Adv. Math. 392, 70 (2021) (Paper No. 108013)

  18. Hacon, C.D., Chenyang, X.: Existence of log canonical closures. Invent. Math. 192(1), 161–195 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hacon, C.D., Kovács, S.J.: Classification of Higher Dimensional Algebraic Varieties. Oberwolfach Seminars, vol. 41. Birkhäuser Verlag, Basel (2010)

    Book  MATH  Google Scholar 

  20. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  21. Hu, Y., Keel, S.: Mori dream spaces and GIT. Mich. Math. J. 48, 331–348 (2000). (Dedicated to William Fulton on the occasion of his 60th birthday)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iitaka, S.: Algebraic Geometry. Volume 76 of Graduate Texts in Mathematics. Springer, New York (1982). (An introduction to birational geometry of algebraic varieties, North-Holland Mathematical Library, 24)

    Google Scholar 

  23. Kawamata, Y.: Flops connect minimal models. Publ. Res. Inst. Math. Sci. 44(2), 419–423 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keel, S., Matsuki, K., McKernan, J.: Log abundance theorem for threefolds. Duke Math. J. 75(1), 99–119 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kempf, G., Knudsen, F.F., Mumford, D., Saint-Donat, B.: Toroidal Embeddings. I. Lecture Notes in Mathematics, vol. 339. Springer, Berlin (1973)

    MATH  Google Scholar 

  26. Kollár, J.: Flips and abundance for algebraic threefolds. Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992)

  27. Kollár, J.: Singularities of the Minimal Model Program, Volume 200 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2013). (With the collaboration of Sándor J Kovács)

    Book  Google Scholar 

  28. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, Volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1998). (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original)

    Book  Google Scholar 

  29. Kovács, S.J., Patakfalvi, Z.: Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension. J. Am. Math. Soc. 30(4), 959–1021 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Matsuki, K.: Introduction to the Mori Program. Universitext, Springer, New York (2002)

    Book  MATH  Google Scholar 

  31. Nanayakkara, B.: Existence of terminal resolutions of geometric Brauer pairs of arbitrary dimension. J. Algebra 371, 653–664 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rost, M.: Chow groups with coefficients. Doc. Math. 1(16), 319–393 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Seidenberg, A.: The hyperplane sections of normal varieties. Trans. Am. Math. Soc. 69, 357–386 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  34. Szabó, E.: Divisorial log terminal singularities. J. Math. Sci. Univ. Tokyo 1(3), 631–639 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is an outcome of the workshop ‘Mori program for Brauer pairs in dimension three’ held in 2014 at the American Institute of Mathematics. The authors are indebted to all the support from the institute and their hospitality. We also thank the anonymous referee for carefully reading the manuscript and providing us with many constructive comments. DC was partially supported by an ARC discovery project grant DP130100513. CI was partially supported by an NSERC Discovery grant. SJK was supported in part by NSF Grant DMS-1565352 and the Craig McKibben and Sarah Merner Endowed Professorship in Mathematics at the University of Washington. RK was partially supported by the National Science Foundation award DMS-1305377. SO was partially supported by Grant-in-Aid for Scientific Research (No. 60646909, 16H05994, 16K13746, 16H02141, 16K13743, 16K13755, 16H06337) from JSPS and the Inamori Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinnosuke Okawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, D., Chan, K., de Thanhoffer de Völcsey, L. et al. The minimal model program for b-log canonical divisors and applications. Math. Z. 303, 87 (2023). https://doi.org/10.1007/s00209-023-03205-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03205-w

Mathematics Subject Classification

Navigation