Skip to main content
Log in

Ext-multiplicity theorem for standard representations of \((\textrm{GL}_{n+1},\textrm{GL}_n)\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(\pi _1\) be a standard representation of \(\textrm{GL}_{n+1}(F)\) and let \(\pi _2\) be the smooth dual of a standard representation of \(\textrm{GL}_n(F)\). When F is non-Archimedean, we prove that \(\textrm{Ext}^i_{\textrm{GL}_n(F)}(\pi _1, \pi _2)\) is \(\cong \mathbb {C}\) when \(i=0\) and vanishes when \(i \ge 1\). The main tool of the proof is a notion of left and right Bernstein–Zelevinsky filtrations. An immediate consequence of the result is to give a new proof on the multiplicity at most one theorem. Along the way, we also study an application of an Euler–Poincaré pairing formula of D. Prasad on the coefficients of Kazhdan–Lusztig polynomials. When F is an Archimedean field, we use the left–right Bruhat-filtration to prove a multiplicity result for the equal rank Fourier–Jacobi models of standard principal series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.: The real Chevalley involution. Compos. Math. 150(12), 2127–2142 (2014). https://doi.org/10.1112/S0010437X14007374

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizenbud, A., Gourevitch, D.: Schwartz functions on Nash manifolds. IMRN 2008, rnm155 (2008). https://doi.org/10.1093/imrn/rnm155

    Article  MathSciNet  MATH  Google Scholar 

  3. Aizenbud, A., Gourevitch, D., Rallis, S., Schiffmann, G.: Multiplicity one theorems. Ann. Math. (2) 172(2), 1407–1434 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arakawa, T., Suzuki, T.: Duality between sl(n, C) and the degenerate affine Hecke algebra. J. Algebra 209, 288–304 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Badulescu, A.I.: On p-adic Speh representations. Bull. Soc. Math. Fr. 142(2), 255–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbasch, D., Ciubotaru, D.: Ladder representations of \({{\rm GL}}(n, Q_{p})\). In: Nevins, M., Trapa, P. (eds.) Representations of Reductive Groups. Progress in Mathematics, vol. 312. Birkhäuser, Cham (2015)

    MATH  Google Scholar 

  7. Bernstein, J.: P-invariant Distributions on GL(N) and the Classification of Unitary Representations of GL(N) (non-Archimedean Case) in Lie Group Representations, II (College Park, Md., 1982/1983), Lecture Notes in Math., vol. 1041, pp. 50–102. Springer, New York (1984)

    Google Scholar 

  8. Bernstein, J., Krötz, B.: Smooth Fréchet globalizations of Harish–Chandra modules. Isr. J. Math. 199, 45–111 (2014). https://doi.org/10.1007/s11856-013-0056-1

    Article  MATH  Google Scholar 

  9. Bernstein, I.N., Zelevinsky, A.V.: Representations of the group \({{\rm GL}} (n, F)\), where \(F\) is a non-Archimedean local field. Russ. Math. Surv. 31(3), 1–68 (1976)

    Article  Google Scholar 

  10. Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive p-adic groups, I. Ann. Sci. Ecole Norm. Sup. 10, 441–472 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beuzart-Plessis, R.: La conjecture locale de Gross-Prasad pour les représentations tempérées des roupes unitaires, Mémoires de la SMF (2016)

  12. Borel, A., Wallach, N.R.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, 2nd edn. American Mathematical Soc, Rhode Island (2000)

    Book  MATH  Google Scholar 

  13. Casselman, W., Hecht, H. Milicic, D.: Bruhat filtrations and Whittaker vectors for real groups. The mathematical legacy of Harish–Chandra (Baltimore, MD, 1998). In: Proc. Sympos. Pure Math., vol. 68. Amer. Math. Soc., Providence, pp 151–190 (2000)

  14. Chan, K.Y.: Quotient branching law for \(p\)-adic \(({{\rm GL}}_{n+1}, {{\rm GL}}_{n})\) I: generalized Gan–Gross–Prasad relevant pairs, arXiv:2212.05919

  15. Chan, K.Y.: Homological branching law for \(({{\rm GL}}_{n+1}(F),{{\rm GL}}_n(F))\): projectivity and indecomposability. Invent. Math. (2021). https://doi.org/10.1007/s00222-021-01033-5

    Article  Google Scholar 

  16. Chan, K.Y.: Restriction for general linear groups: the local nontempered Gan–Gross–Prasad conjecture 2022(783), 49–94 (2022). https://doi.org/10.1515/crelle-2021-0066

  17. Chan, K.Y., Savin, G.: Bernstein–Zelevinsky derivatives: a Hecke algebra approach. IMRN (2019). https://doi.org/10.1093/imrn/rnx138

    Article  MATH  Google Scholar 

  18. Chan, K.Y., Savin, G.: A vanishing Ext-branching theorem for \(({{\rm GL}}_{n+1}(F), {{\rm GL}}_n(F))\). Duke Math. J. 170(10), 2237–2261 (2021). https://doi.org/10.1215/00127094-2021-0028

    Article  MathSciNet  MATH  Google Scholar 

  19. Chandra, H.: Harmonic Analysis on Reductive p-adic Groups, Lecture Notes in Mathematics (LNM, vol. 162). https://doi.org/10.1007/BFb0061269

  20. Chen, Y., Sun, B.: Schwartz homologies of representations of almost linear Nash groups. Journal of Functional Anlaysis 289, 7 (2021)

    MATH  Google Scholar 

  21. Chenevier, G., Renard, D.: Characters of Speh representations and Lewis Caroll identity. Represent. Theory 12, 447–452 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. du Cloux, F.: Sur les représentations différentiables des groupes de Lie algébriques. Ann. Sci. de l’É.N.S. 4e, série Tome 24(3), 257–318 (1991)

  23. Gan, W.T., Gross, B.H., Prasad, D.: Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups. In: Sur les Conjectures de Gross et Prasad. I., Asterisque No. 346, pp. 1–109 (2012)

  24. Gan, W.T., Gross, B.H., Prasad, D.: Branching laws for classical groups: the non-tempered case. Compos. Math. 156(11), 2298–2367 (2020). https://doi.org/10.1112/S0010437X20007496

    Article  MathSciNet  MATH  Google Scholar 

  25. Gelfand, I.M., Kajdan, D.A.: Representations of GL(n, K) Where K is a Local Field. Institute for Applied Mathematics, No. 942 (1971)

  26. Godement, R.: Notes on Jacquet–Langlands’ theory, preprint. Princeton (1970)

  27. Hang, X.: Bessel models for unitary groups and Schwartz homology, preprint (2020)

  28. Ichino, A., Yamana, S.: Periods of automorphic forms: The case of \({{\rm GL}}_{n+1}(F)\times {{\rm GL}}_{n}(F)\). Compos. Math. 151(4), 665–712

  29. Jacquet, H.: ’Archimedean Rankin–Selberg integrals’. In: D. Ginzburg et al. (eds.) Automorphic Forms and \(L\)-functions, II: Local Aspects, Contemp. Math. vol. 489. American Mathematical Society, Providence, pp. 57–172 (2009)

  30. Jacquet, H., Shalika, J.: The Whittaker models of induced representations. Pac. J. Math. 109(1), 107–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jacquet, H., Piatetski-Shapiro, I., Shalika, J.: Rankin–Selberg convolutions. Am. J. Math. 105(2), 367–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979). https://doi.org/10.1007/BF01390031

    Article  MathSciNet  MATH  Google Scholar 

  33. Lapid, E., Mínguez, A.: On a determinantal formula of Tadić. Am. J. Math. 136, 111–142 (2014)

    Article  MATH  Google Scholar 

  34. Liu, Y., Sun, B.: Uniqueness of Fourier–Jacobi models: the Archimedean case. J. Funct. Anal. 265(12), 3325–3344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Loeffler, D.: Gross–Prasad periods for reducible representations. Forum Mathematicum, vol. 33, no. 5, 1169–1177 (2021). https://doi.org/10.1515/forum-2021-0089

  36. Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2(3), 599–635 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mezer, D.: Multiplicity one theorem for \(({{\rm GL}}_{n+1},{{\rm GL}}_{n})\) over a local field of positive characteristic. Math. Z. 297, 1383–1396 (2021). https://doi.org/10.1007/s00209-020-02561-1

    Article  MathSciNet  MATH  Google Scholar 

  38. Mœglin, C., Waldspurger, J.-L.: La conjecture locale de Gross-Prasad pour les groupes speciaux orthogonaux: le cas general. In: Sur les Conjectures de Gross et Prasad. II, Astersque. No. 247, pp. 167–216 (2012)

  39. Prasad, D.: On the decomposition of a representation of \({{\rm GL}}{(3)}\) restricted to \({{\rm GL}}(2)\) over a \(p\)-adic field. Duke Math. J. 69, 167–177 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Prasad, D.: An Ext-analogue of branching laws. In: ICM proceedings (2018)

  41. Shalika, J.A.: The Multiplicity One Theorems for \({{\rm GL}}_{n}\). Ann. Math. (2) 100(2), 171–193 (1974)

    Article  MathSciNet  Google Scholar 

  42. Speh, B.: The unitary dual of \({{\rm GL}}(3,{\mathbb{R}})\) and \({{\rm GL}}(4,{\mathbb{R}})\). Math. Ann. 258, 113–133 (1981). https://doi.org/10.1007/BF01450529

    Article  MathSciNet  MATH  Google Scholar 

  43. Sun, B., Zhu, C.B.: Multiplicity one theorems: the Archimedean case. Ann. Math. (2) 175(1), 23–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tadić, M.: On the classification of irreducible unitary representations of GL(n) and the conjectures of Bernstein and Zelevinsky. Ann. Sci. École Norm. Sup. 19, 335–382 (1986)

    Article  MathSciNet  Google Scholar 

  45. Tadić, M.: On characters of irreducible unitary representations of general linear groups. Abh. Math. Sem. Univ. Hamburg 65, 341–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Dover Publications, Mineola (2016)

    MATH  Google Scholar 

  47. Vogan, D.: Representations of Real Reductive Groups, Progr. Math., vol. 15. Birkhäuser, Boston (1981)

  48. Warner, G.: Harmonic Analysis on Semisimple Lie Groups I. Springer, New York (1972)

    Book  MATH  Google Scholar 

  49. Weibel, C.: An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  50. Zelevinsky, A.: Induced representations of reductive p-adic groups II. Ann. Sci. Ecole Norm. Sup. 13, 154–210 (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dragan Miličić, Dipendra Prasad, Gordan Savin and Peter Trapa for useful communications. The author would like to thank the referee for useful remarks and suggestions to improve expositions of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Yuen Chan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, K.Y. Ext-multiplicity theorem for standard representations of \((\textrm{GL}_{n+1},\textrm{GL}_n)\). Math. Z. 303, 45 (2023). https://doi.org/10.1007/s00209-022-03198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03198-y

Navigation