Skip to main content
Log in

Based modules over the \(\imath \)quantum group of type AI

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This paper studies classical weight modules over the \(\imath \)quantum group \(\textbf{U}^{\imath }\) of type AI. We introduce the notion of based \(\textbf{U}^{\imath }\)-modules by generalizing the notion of based modules over quantum groups (quantized enveloping algebras). We prove that each finite-dimensional irreducible classical weight \(\textbf{U}^{\imath }\)-module with integer highest weight is a based \(\textbf{U}^{\imath }\)-module. As a byproduct, a new combinatorial formula for the branching rule from \(\mathfrak {sl}_n\) to \(\mathfrak {so}_n\) is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appel, A., Vlaar, B.: Universal \(K\)-matrices for quantum Kac-Moody algebras. Represent. Theory 26, 764–824 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balagović, M., Kolb, S.: The bar involution for quantum symmetric pairs. Represent. Theory 19, 186–210 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balagović, M., Kolb, S.: Universal \(K\)-matrix for quantum symmetric pairs. J. Reine Angew. Math. 747, 299–353 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, H., Wang, W.: A New Approach to Kazhdan–Lusztig Theory of Type B via Quantum Symmetric Pairs, Astérisque (402), vii+134 (2018)

  5. Bao, H., Wang, W.: Canonical bases arising from quantum symmetric pairs. Invent. Math. 213(3), 1099–1177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, H., Wang, W.: Canonical bases arising from quantum symmetric pairs of Kac-Moody type. Compos. Math. 157(7), 1507–1537 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman, C., Wang, W.: Formulae of \(\imath \)-divided powers in \(U_q(\mathfrak{sl} _2)\). J. Pure Appl. Algebra 222(9), 2667–2702 (2018)

    Article  MathSciNet  Google Scholar 

  8. De Commer, K., Matassa, M.: Quantum flag manifolds, quantum symmetric spaces and their associated universal K-matrices, Adv. Math. 366, 107029, 100 pp (2020)

  9. Dixmier, J.: Enveloping Algebras, Revised reprint of the 1977 translation. Graduate Studies in Mathematics, 11. American Mathematical Society, Providence, RI, 1996. xx+379 pp

  10. Ehrig, M., Stroppel, C.: Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality. Adv. Math. 331, 58–142 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gavrilik, A.M., Klimyk, A.U.: \(q\)-deformed orthogonal and pseudo-orthogonal algebras and their representations. Lett. Math. Phys. 21(3), 215–220 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hong, J., Kang, S.-J.: Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, 42. American Mathematical Society, Providence, RI. xviii+307 (2002)

  13. Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, xii+169 (1972)

  14. Jang, I.-S., Kwon, J.-H.: Flagged Littlewood-Richardson tableaux and branching rule for classical groups. J. Combin. Theory Ser. A 181, 105419 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jantzen, J. C.: Lectures on Quantum Groups, Graduate Studies in Mathematics, 6. American Mathematical Society, Providence, RI, viii+266 (1996)

  16. Kashiwara, M.: Crystalizing the \(q\)-analogue of universal enveloping algebras. Comm. Math. Phys. 133(2), 249–260 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolb, S.: Quantum symmetric Kac-Moody pairs. Adv. Math. 267, 395–469 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koornwinder, T.H.: Orthogonal polynomials in connection with quantum groups, Orthogonal polynomials (Columbus, OH, 1989), 257–292, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 294, Kluwer Acad. Publ., Dordrecht (1990)

  21. Letzter, G.: Symmetric pairs for quantized enveloping algebras. J. Algebra 220(2), 729–767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lusztig, G.: Introduction to Quantum Groups, Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser/Springer, New York xiv+346, (2010)

  24. Naito, S., Sagaki, D.: An approach to the branching rule from sl2n(C) to sp2n(C) via Littelmann’s path model. J. Algebra 286(1), 187–212 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Noumi, M.: Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. Adv. Math. 123(1), 16–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Regelskis, V., Vlaar, B.: Quasitriangular coideal subalgebras of \(U_q(\mathfrak{g} )\) in terms of generalized Satake diagrams. Bull. Lond. Math. Soc. 52(4), 693–715 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sartori, A., Tubbenhauer, D.: Webs and \(q\)-Howe dualities in types \(BCD\). Trans. Am. Math. Soc. 371(10), 7387–7431 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stokman, J.V.: Generalized Onsager algebras. Algebr. Represent. Theory 23(4), 1523–1541 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Watanabe, H.: Crystal basis theory for a quantum symmetric pair \((\textbf{U},\textbf{U} ^\jmath )\). Int. Math. Res. Not. IMRN 22, 8292–8352 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Watanabe, H.: Global crystal bases for integrable modules over a quantum symmetric pair of type AIII. Represent. Theory 25, 27–66 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Watanabe, H.: Classical weight modules over \(\imath \)quantum groups. J. Algebra 578, 241–302 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks anonymous referees for helpful comments. This work was supported by JSPS KAKENHI Grant Number JP20K14286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideya Watanabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, H. Based modules over the \(\imath \)quantum group of type AI. Math. Z. 303, 43 (2023). https://doi.org/10.1007/s00209-022-03189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03189-z

Mathematics Subject Classification

Navigation